
Parallel Programming
Exercise Session 11

1

Outline

2

1. Feedback: Assignment 10
2. Assignment 11

Feedback: Assignment 10

3

Task 1 – Monitors, Conditions and Bridges

4

Only either 3 cars or one truck may be on the bridge at each moment.

Implement Classes BridgeMonitor and BridgeCondition

How to Test my Implementation?
Implement method invariant() to check if the state is valid: at the end of
a method there are never too many cars or trucks on the bridge

Task 2 – BridgeMonitor

5

Task 2 – BridgeCondition

6

Task 2 – Discussion

7

Task 3 – Semaphores and Databases

8

Use semaphores to implement login and logout
database functionality that supports up to 10
concurrent users

Use barrier to implement 2-phase backup
functionality.

Task 3 – MySemaphore

9

Task 3 – MyBarrier

10

Task 3 – Discussion

11

Assignment 11

• Multisensor System.

12

Multisensor System

13

Multisensor System

14

Multisensor System

15

Implement two versions of the senor data set:
a) One blocking version based on a readers-writers lock (LockedSensors.java).
b) A lock-free version (LockFreeSensors.java)

Hints:

• Before you implement the readers-writers lock based version, start with a simple locked version in order
to understand. Then try a readers-writers lock but be aware that the Java-implementation does not give
fairness guarantees. What can this imply? In any case, you have the code from the lecture slides
presenting a fair RW-Lock implementation.

• The lock-free implementation solutions does NOT rely on mechanisms such as Double-Compare- And-
Swap. Also it does not rely on a lazy update mechanism. Somehow you have to make sure that with a
single reference update you change all data at once. How?

Readers-writers lock

16

Readers-writers lock

17

Readers-writers lock

18

Readers-writers lock in Java
double readSomething() {
 readerWriterLock.readLock().lock();
 try {
 double value = retrieveDoubleValue();
 return value;
 } finally {
 readerWriterLock.readLock().unlock();
 }
}

Void writeSomething(double new_value) {
 readerWriterLock.writeLock().lock();
 try {
 storeDoubleValue(new_value);
 } finally {
 readerWriterLock.writeLock().unlock();
 }
}

19

No fairness guarantees!

20

Readers-writers lock with monitors

21

Readers-writers lock with monitors

22

Readers-writers lock with monitors

 Problems with locks

23

Lock free

24

Lock-free

Object readSomething() {
 return atomicReference.get();
}

Void writeSomething(Object new_object) {
 Object old_object;
 do {
 old_object = atomicReference.get();
 // Check if we want to overwrite the latest data (i.e. only write newer or better data)
 if (…) {
 return;
 }
 } while (!atomicReference.compareAndSet(old_object, new_object));
}

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

