
Parallel Programming
Exercise Session 12

Outline

2

1. Feedback: Assignment 11
2. Recap: Linearizability
3. Recap: Java memory model
4. Recap: Software Transactional Memory (STM)
5. Assignment 12

Feedback: Assignment 11

3

Assignment 11

• Multisensor System.

4

LockedSensors

5

LockedSensors

6

LockedSensors

7

Lock implementation

8

Lock implementation

9

Lock implementation

10

Lock implementation

11

Lock implementation

12

LockFreeSensors

13

LockFreeSensors

14

Lecture 20

Without Locks II

LockFreeSensors

15

LockFreeSensors

16

LockFreeSensors

17

If vs while !

Correctness

Program correctness in a sequential world

Objects encapsulate some representation of state

19

Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

20

Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

21

Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition

22

Program correctness in a concurrent world

23

Program correctness in a concurrent world

24

25

Execution

26

Execution

Quiescent Consistency

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-

time order, but overlapping operations might be reordered

28

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-

time order, but overlapping operations might be reordered

29

Sequential Consistency

Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified
by its program."

- Leslie Lamport (inventor of sequential consistency)

31

Sequential consistency requirements

1. All instructions are executed in order.

32

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout
the system.

33

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout
the system.

34

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

35

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

36

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

37

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y
NOT quiescentially

consistent : there is a

quiescent period between

these operations which

should “synchronize”

operations

Sequentially consistent (T2

views history in order)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

38

T1

T2

q.enq(x)

q.enq(y) q.deq() -> y

Sequentially consistent (T2

views history correct)

Quiescentially consistent

(no quiescent period

between these operations,

all is good)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

39

T1 q.deq() -> yq.enq(x) q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

40

NOT sequentially

consistent (T1 has

reordered operations)

NOT quiescentially

consistent : there is a

quiescent period between

these operations which

should “synchronize”

operations

T1 q.deq() -> yq.enq(x) q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

41

T1

T2

q.deq() -> y

q.enq(z)

q.enq(x) q.enq(y)

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not

quiescently consistent, and vice versa

42

T1

T2

q.deq() -> y

q.enq(z)

q.enq(x)

NOT sequentially consistent

(T1 has reordered

operations)

Quiescentially consistent

(no quiescent period

between these operations,

all is good)

q.enq(y)

Linearizability

Consistency model: Linearizability

• Linearizability provides the illusion that each operation

applied by concurrent processes takes effect

instantaneously between its invocation and its response.

44

Consistency model: Linearizability

• Linearizability provides the illusion that each operation

applied by concurrent processes takes effect

instantaneously between its invocation and its response.

• An object for which this is true for all possible executions

is called linearizable

45

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

q.deq() -> y

Example (1)

46time

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example (1)

47

Is this

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2)

48time

Is this

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2)

49

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> q

q.deq() -> x

Example (3)

50time

Is this

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> y

time

q.deq() -> x

Here we got

multiple orders!

Yes!

Example (3)

51

Is this

linearizable?

Write(0) Read(1) Write(2)

Write(1)

Example (4)

52

Read(1)

time

Is this

linearizable?

Write(0) Read(1)

time

Write(2)

Write(1)

No!

Example (4)

53

Read(1)

Is this

linearizable?

Write(0) Write(2)

Write(1) Read(1)

Example (4.5)

54time

Is this

linearizable?

Write(0)

time

Write(2)

Write(1)

Yes!

Read(1)

Example (4.5)

55

Linearization Point

The linearization point is the point where the method

takes effect.

Linearization Point

The linearization point is the point where the method

takes effect.

Linearization Point

The linearization point is the point where the method

takes effect.

Linearization Point

The linearization point is the point where the method

takes effect.

Linearization Point

The linearization point is the point where the method

takes effect.

Recap: Java Memory Model

61

Quiz

62

X = 1

I = Y

Y = 1

J = X

X = 0, Y = 0

Thread

A
Thread B

Can I == 0 and J == 0 at the end of the execution?

Quiz – Multicore case

63

Y = 1

J = X

X = 0, Y = 0

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0 X = 0, Y = 0

CPU1 CPU2

Quiz – Multicore case

64

Y = 1

J = X

X = 0, Y = 0

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0 X = 0, Y = 1

CPU1 CPU2

Quiz – Multicore case

65

Y = 1

J = X

X = 0, Y = 0

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0 X = 0, Y = 1, J = 0

CPU1 CPU2

Quiz – Multicore case

66

Y = 1

J = X

X = 1, Y = 1, I = 0, J = 0

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0 X = 0, Y = 1, J = 0

CPU1 CPU2

Eventually…

Quiz – Single core case

67

Y = 1

J = X

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0

CPU1

Quiz – Single core case

68

J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0

CPU1

Compiler: It is more efficient to exchange these two unrelated instructions

Quiz – Single core case

69

J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0, J = 0

CPU1

Quiz – Single core case

70

J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, J = 0

CPU1

Quiz – Single core case

71

J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0, J = 0

CPU1

Quiz – Single core case

72

J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0, J = 0

CPU1

Java Memory Model

• Relaxed - Not even sequentially consistent!

Java Memory Model

• Relaxed - Not even sequentially consistent!

• Why? To accommodate compiler optimizations

Java Memory Model

• Relaxed - Not even sequentially consistent!

• Why? To accommodate compiler optimizations

… all of which work by caching and/or reordering

memory reads–writes

Java Memory Model

76

Executions can be made sequentially consistent
on demand by using synchronization primitives
and following a set of rules.

Synchronization

77

write(x)

unlock(L)

read(x)

Thread A

Thread B

lock(L)

- volatile accesses do not count as data races

- the compiler does not touch volatile accesses

- forces reads and writes directly to memory

Volatile - Intuition

Volatile - Semantics are similar to locking

volatile int x;

void foo() {

x = 1;

}

volatile int x;

void foo() {

synchronized (x) {

x = 1;

}

}

• Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but

- variable can also be null

- cannot block

- works for primitive types

Volatile - Semi Formal

• Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but

- variable can also be null

- cannot block

- works for primitive types

• each access goes directly to global memory

Volatile - Semi Formal

• Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but

- variable can also be null

- cannot block

- works for primitive types

• each access goes directly to global memory

• volatile variables are linearizable

Volatile - Semi Formal

Volatile - Only individual accesses are “locked”

volatile int x;

void foo() {

x++;

}

volatile int x; int tmp;

void foo() {

synchronized (x) {

tmp = x;

}

tmp = tmp + 1;

synchronized (x) {

x = tmp;

}

}

Volatile - Typical Use Case

• One writer thread

• Several reader threads

Volatile - Typical Use Case

• One writer thread

• Several reader threads

• Commonly simple value updates:

- set a flag

- increment a counter, compute a max (single writer!)

Volatile - Typical Use Case

• One writer thread

• Several reader threads

• Commonly simple value updates:

- set a flag

- increment a counter, compute a max (single writer!)

• In case multiple writer threads: use atomics

Happens-before order

• Execution order within one thread established happens-before
order

87

Happens-before order

• Execution order within one thread established happens-before
order

• Lock release and subsequent lock acquire establish happens-
before order

88

Happens-before order

• Execution order within one thread established happens-before
order

• Lock release and subsequent lock acquire establish happens-
before order

• Write to a volatile variable happens-before every subsequent
read

89

Happens-before order

• Execution order within one thread established happens-before
order

• Lock release and subsequent lock acquire establish happens-
before order

• Write to a volatile variable happens-before every subsequent
read

• Happens-before order is transitive

90

More formal treatment

More informal treatment

https://www.youtube.com/watch?v=WTVooKLLVT

8

Java Language Specification

Multi-valent states

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others)
• Postcondition: all participants decide on the same value (known to others)

• Conclusion: there must be a transition between one and the other.

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Critical!

Assignment 12

103

Exercises

Exercises

Exercises

Exercises

Exercises

Exercises

Exercises

Generic consensus protocol

Generic consensus protocol

Implement decide() method and constructor

(See consensus using FIFO)

Exercises

