Parallel Programming
Exercise Session 12

Outline

1. Feedback: Assignment 11

2. Recap: Linearizability

3. Recap: Java memory model

4. Recap: Software Transactional Memory (STM)
5. Assignment 12

Feedback: Assignment 11

Assignment 11

* Multisensor System.

thread
thread
thread

sensor data

monitor
thread

monitor
thread

monitor
thread

LockedSensors

class LockedSensors implements Sensors {

long time = @;
double data[];

private ReadWritelLock lock;
private Lock readlock;
private Lock writelock;

LockedSensors() {
this(new ReadWriteMonitorLock());

1

LockedSensors(ReadWritelLock 1){
time = @;
lock = 1;

readlock = lock.readlLock();
writelock = lock.writelLock();

LockedSensors

class LockedSensors implements Sensors {

long time = @;
double data[];

private ReadWritelLock lock;
private Lock readlock;
private Lock writelock;

LockedSensors() {
this(new ReadWriteMonitorLock());

1

LockedSensors(ReadWritelLock 1){
time = @;
lock = 1;

readlock = lock.readlLock();
writelock = lock.writelLock();

public long get(double val[])

{
if (time == @)
return @;
else{
for (int i = @; i<data.length; ++1i)
val[i] = data[i]l;
return time;
1
1

public void update(long timestamp, double[] data)
{

if (timestamp > time) {
if (this.data == null)
this.data = new double[data.length];
time = timestamp;
for (int i=0; i<data.length;++1i)
this.data[i]= data[i];
}

LockedSensors

class LockedSensors implements Sensors {

long time = @;
double data[];

private ReadWritelLock lock;
private Lock readlock;
private Lock writelock;

LockedSensors() {
this(new ReadWriteMonitorLock());

1

LockedSensors(ReadWritelLock 1){
time = @;
lock = 1;

readlock = lock.readlLock();
writelock = lock.writelLock();

public long get(double val[])

{
readlock.lock();
try{
if (time == @)
return 0;
else{
for (int 1 = @; i<data.length; ++1i)
val[i] = data[i];
return time;
}
}finally {
readlock.unlock();
}
1

public void update(long timestamp, double[] data)
{
writelock.lock();
try{
if (timestamp > time) {
if (this.data == null)
this.data = new double[data.length];
time = timestamp;
for (int i=0; i<data.length;++1i)
this.data[i]= data[i];

}
}
finally {
writelock.unlock();
}

Lock implementation

public class ReadWriteMonitorLock implements ReadWritelock{
private Lock readerlock = new ReadMonitorLock(this);
private Lock writerlock = new WriteMonitorLock(this);

//Invariant @<=readers /\ @<=writers<=1 /\ readers*writers=0
private int readers=0;
private int writers=0;

private int writersWating=e0;
private int readersWating=e0;
private int readersToWait=0;

@0verride
public Lock readLock() {
return readerlock;

}

@0verride
public Lock writeLock() {
return writerlock;

}

-

private synchronized void aquireRead(){

. . readersWating++;
Lock implementation shileC >
try {
wait();
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ @<=writers<=1 /\ readers*writers=0 readers++;
private int readers=@; 1
private int writers=0; private synchronized void releaseRead(){
readers--;
notifyAll(Q);

private int writersWating=e0;
private int readersWating=e0; }
private int readersToWait=0;

@0verride
public Lock readLock() {
return readerlock;

}

@0verride
public Lock writeLock() {
return writerlock;

}

-

private synchronized void aquireRead(){

. . readersWating++;
LOCk Implementatlon while(writers>@ || (writersWating>@ && readersToWait<=0)){
try {
wait();
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ @<=writers<=1 /\ readers*writers=0 readers++;
private int readers=@; 1
private int writers=0; private synchronized void releaseRead(){
readers--;
notifyAll(Q);

private int writersWating=e0;
private int readersWating=e0; }
private int readersToWait=0;

@0verride
public Lock readLock() {
return readerlock;

}

@0verride
public Lock writeLock() {
return writerlock;

}

10

-

private synchronized void aquireRead(){

. . readersWating++;
LOCk Implementatlon while(writers>@ || (writersWating>@ && readersToWait<=0)){
try {
wait();
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ @<=writers<=1 /\ readers*writers=0 readers++;
private int readers=@; 1
private int writers=0; private synchronized void releaseRead(){
readers--;
private int writersWating=@; notifyAll();
private int readersWating=e0; }
private int readersToWait=0;
@0verride private synchronized void aquireWrite(){
public Lock readlLock() { writersWating++;
return readerlock; while(DL
} try {
wait();
@0verride } catch (InterruptedException e) { e.printStackTrace(); }
public Lock writeLock() { } i .
return writerlock; writersWating--;
1 ! writers++;

private synchronized void releaseWrite(){
writers--;
readersToWait = readersWating;
notifyAll();

11

-

private synchronized void aquireRead(){

. . readersWating++;
LOCk Implementatlon while(writers>@ |1 (writersWating>@ && readersToWait<=0)){
try {
wait();
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ @<=writers<=1 /\ readers*writers=0 readers++;
private int readers=@; 1
private int writers=0; private synchronized void releaseRead(){
readers--;
private int writersWating=0; notifyAll();
private int readersWating=e0; }
private int readersToWait=0;
@0verride private synchronized void aquireWrite(){
public Lock readLock() { writersWating++;
return readerlock; while(writers>@ || readers>® || readersToWait>@){
} try {
wait();
@0verride } catch (InterruptedException e) { e.printStackTrace(); }
public Lock writeLock() { }) .
return writerlock; writersWating--;
} ! writers++;

private synchronized void releaseWrite(){
writers--;
readersToWait = readersWating;
notifyAll();

12

LOCkFreesensorS class LockFreeSensors implements Sensors {

AtomicReference<SensorData> data;

LockFreeSensors()

{
}

data = new AtomicReference<SensorData>(new SensorData(@L, new double[0]));

13

LOCkFreesensorS class LockFreeSensors implements Sensors {

Lecture 20
AtomicReference<SensorData> data; Without Locks I
LockFreeSensors()
{

data = new AtomicReference<SensorData>(new SensorData(@L, new double[0]));

}

14

LockFreeSensors

public long get(double val[])

{

SensorData d = data.get();

double[] v = d.getValues();

if (v == null) return @;

for (int i=0@; i<v.length; ++1i)
vall[i] = v[i];

return d.getTimestamp();

class LockFreeSensors implements Sensors {

AtomicReference<SensorData> data;

LockFreeSensors()

{
}

data = new AtomicReference<SensorData>(new SensorData(@L, new double[0]));

15

LockFreeSensors

public long get(double val[])

{

SensorData d = data.get();

double[] v = d.getValues();

if (v == null) return @;

for (int i=0@; i<v.length; ++1i)
vall[i] = v[i];

return d.getTimestamp();

class LockFreeSensors implements Sensors {
AtomicReference<SensorData> data;

LockFreeSensors()

{
}

data = new AtomicReference<SensorData>(new SensorData(@L, new double[0]));

public void update(long timestamp, double[] val)

{

SensorData old_data;
SensorData new_data = new SensorData(timestamp, val);
do {
old_data = data.get();
if (old_data !'= null && old_data.getTimestamp() >= new_data.getTimestamp()) {
return;

}
} while (!data.compareAndSet(old_data, new_data));

LOCkFreesensorS class LockFreeSensors implements Sensors {

AtomicReference<SensorData> data;

LockFreeSensors()
{
data = new AtomicReference<SensorData>(new SensorData(@L, new double[@]));
}
public long get(double val[])
{
SensorData d = data.get();
double[] v = d.getValues();
if (v == null) return 0,
for (int i=0@; i<v.length; ++1i)
val[i] = v[i];
return d.getTimestamp();
} public void update(long timestamp, double[] val)
{
SensorData old_data;
SensorData new_data = new SensorData(timestamp, val);
do {
old_data = data.get();
If vs while ! if (:'Ld_da?a = null && old_data.getTimestamp() >= new_data.getTimestamp()) {
eturn;
}

} while (!data.compareAndSet(old_data, new_data));

Correctness

Program correctness in a sequential world

Objects encapsulate some representation of state

19

Program correctness in a sequential world

Objects encapsulate some representation of state

« We don'’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

20

Program correctness in a sequential world

Objects encapsulate some representation of state

« We don'’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

« State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

21

Program correctness in a sequential world

Objects encapsulate some representation of state

We don’t reason about the representation directly, but about its visibility
from outside (via public methods) (e.g. stack.top()==3)

State must be consistent, i.e., according to the public class invariant
(e.g., forall x. stack.push(x).pop()==x)

Each method satisfies its post-condition, given its pre-condition

22

Program correctness in a concurrent world

Each method described
independently.

Object’s state is defined between
method calls.

Adding new method does not affect
older methods.

23

Program correctness in a concurrent world

Sequentisl | Concurrene

Each method described Need to describe all possible
independently. interactions between methods.
(what if enq and deq overlap? ...)

Object’s state is defined between Because methods can overlap, the
method calls. object may never be between
method calls...

Adding new method does not affect Need to think about all possible
older methods. interactions with the new method.

24

Execution

q.enq(x) q.deq() 2y

A e D R —— F e e —
q.eny(y) q.deq() =x

B --------eeeeeee- — - @ -

time

25

Execution

B invocation X

M Definitely after X
I Definitely before X

M Can't tell before
or after X

26

Quiescent Consistency

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-
time order, but overlapping operations might be reordered

28

Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-
time order, but overlapping operations might be reordered

g.enq(X) q.deq() =2 X
A - @ - - - -mmmmmmmmmmmemeeeeeeeeoe- T s
... quiescence...
g.size() 2 n
B ------- @ @ -~~~ e

29

Sequential Consistency

Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified
by its program.”

- Leslie Lamport (inventor of sequential consistency)

31

Sequential consistency requirements

1. All instructions are executed in order.

32

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout
the system.

33

Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout
the system.

q.enq(x) q.deq() =2y
S — P — P —
g.enq(y)
B mmrm -® i

34

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

35

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

LEE— .enq(x)
T2 g.enq(y) g.deq() ->y

v

v

36

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

T1

T2

7

Sequentially consistent (T2
views history in order)

N\

[
»

p
m _g.enq) g.deq() >y

NOT quiescentially
consistent : there is a
quiescent period between
these operations which
should “synchronize”
operations

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

Sequentially consistent (T2
views history correct)

Tl g-eng(x) >
T2 d.enq(y) g.deq() ->y Quiescentially consistent

(no quiescent period
between these operations,
all is good)

38

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

v

T1 g.enq(x) g.enq(y) g.deq() ->vy

39

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

NOT sequentially

A consistent (T1 has
T genq(x) B gengy) Bl q.deq() ->y (

| _ reordered operations) |

NOT quiescentially
consistent : there is a
quiescent period between
these operations which
should “synchronize”
operations

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

v

T1 g.enq(x) g.enq(y) g.deq() ->vy

[— 0end?)

v

41

Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not
guiescently consistent, and vice versa

NOT sequentially consistent
A (T1 has reordered
T1 g.enq(x) gu d.enq(y) g.deq() >y

operations)
2 — RO

Quiescentially consistent
(no quiescent period
between these operations,
all is good)

Linearizability

Consistency model: Linearizability

 Linearizability provides the illusion that each operation
applied by concurrent processes takes effect
Instantaneously between its invocation and its response.

44

Consistency model: Linearizability

 Linearizability provides the illusion that each operation
applied by concurrent processes takes effect
Instantaneously between its invocation and its response.

* An object for which this is true for all possible executions
Is called linearizable

45

Example (1)

Is this
linearizable?

-
> ¢

__

46

Example (1)

Is this
linearizable?

Yes!

a7

Example (2)

Is this
linearizable?

m

€

“

48

Example (2)

Is this
linearizable?

49

Example (3)

Is this
linearizable?

m
«<) &)

__

50

Here we got

Exam |O|e (3) multiple orders!
Is this Yes!
linearizable?

>
mm

51

Example (4)

Is this
linearizable?

@
——

__

52

Example (4)

Is this
linearizable? No!

>
—— ¢

e NN

53

Example (4.5)

Is this
linearizable?

o
——

__

54

Example (4.5)

Is this
linearizable? Yes!

55

Linearization Point

public boolean add(T item) {
int key = item.hashCode();
head.Tock();
Node pred = head;
try |
Node curr = pred.next;
curr.lock();
try |
while (curr.key =< key) |
pred.unlock();
pred = curr;
curr = curr.next;
curr. lock();
]
if (curr.key == key) |
return false;
I-
Node newNode = mew Node{item);
newNode .next = curr;
pred.next = newNode;
return true;
b fimally |
curr.unlock();

b fimally {
pred.unlock();

I-

The linearization point is the point where the method
takes effect.

Linearization Point

public boolean add(T item) {
int key = item.hashCode();
head.Tock();
Node pred = head;
try |
Node curr = pred.next;
curr.lock();
try |
while (curr.key =< key) |
pred.unlock();
pred = curr;
curr = curr.next;
curr. lock();
I
if (curr.key == key) |
return false;
I
Node newNode = mew Node{item);
newNode .next = curr;
pred.next = newNode;
return true;
b fimally |
curr.unlock(); <«

I
b fimally {
pred.unlock();

}

The linearization point is the point where the method
takes effect.

Linearization Point

1 class WaitFreeQuene<T= |

7 volatile int head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) |
5 items = (T[])new Object[capacity];
b head = 0; tail = 0;

7}

] public void eng(T x) throws Ful IException |
] if (tail - head == items.length)

10 throw new FullException();

11 items[tail % items.length] = x3

12 tail+;

13}

14 public T deq() throws EmptyException |
15 if (tail - head == 0)

16 threw new EmptyException()

17 T x = items[head % items.length];
15 head++;

19 return x;

o

3
[

'

The linearization point is the point where the method
takes effect.

Linearization Point

1 class WaitFreeQuene<T= |

7 volatile int head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) |
5 items = (T[])new Object[capacity];
b head = 0; tail = 0;

7 }

] public void eng(T x) throws Ful IException |
] if (tail - head == items.length)

10 throw new FullException(); <

11 items[tail % items.length] = x3

12 tail+; <

13 I

14 public T deq() throws EmptyException |
15 if (tail - head == 0)

16 threw new EmptyException()

17 T x = items[head % items.length];
15 head++;

19 return x;

20 I

3
[

t

The linearization point is the point where the method
takes effect.

Linearization Point

1 class WaitFreeQuene<T= |

7 volatile int head = 0, tail = 0;

3 T[] items;

4 public WaitFreeQueue(int capacity) |
5 items = (T[])new Object[capacity];
b head = 0; tail = 0;

7 }

] public void eng(T x) throws Ful IException |
] if (tail - head == items.length)

10 throw new FullException(); <

11 items[tail % items.length] = x3

12 tail+; <

13 I

14 public T deq() throws EmptyException |
15 if (tail - head == 0)

16 threw new EmptyException(): <

17 T x = items[head % items.length];
15 head++; <

19 return x;

20 I

3
[

t

The linearization point is the point where the method
takes effect.

Recap: Java Memory Model

Quiz

X=0,Y=0
Thread /\ Thread B
X=1 Y=1
=Y J=X

Can | == 0 and J == 0 at the end of the execution?

Quiz — Multicore case

Thread A Thread B
X=1 Y=1
Y CPU1 CPU2
=Y J=X
X=0,Y=0 X=0,Y=0

X=0,Y=0

63

Quiz — Multicore case

Thread A Thread B
X=1 Y=1
Y CPU1 CPU2
=Y J=X
X=1,Y=0 X=0,Y=1

X=0,Y=0

64

Quiz — Multicore case

Thread A Thread B
X=1 Y=1
Y CPU1 CPU2
=Y J=X

X=1,Y=0,1=0

X=0,Y=1,J=0

X=0,Y=0

65

Quiz — Multicore case

Thread A Thread B
X=1 Y=1
Y CPU1 CPU2
=Y J=X

X=1,Y=0,1=0

X=0,Y=1,J=0

X=1,Y=1,1=0,J=0

Eventually...

66

Quiz — Single core case

Thread A

X=1

CPU1

Thread B

Y=1

X=0,Y=0

67

Quiz — Single core case

Thread A

X=1

>

CPU1

Thread B

J=X

Compiler: It is more efficient to exchange these two unrelated instructions

X=0,Y=0

68

Quiz — Single core case

Thread A

X=1

CPU1

Thread B

J=X

X=0,Y=0,J=0

69

Quiz — Single core case

Thread A

X=1

CPU1

Thread B

J=X

X=1,Y=0,J=0

70

Quiz — Single core case

Thread A

X=1

CPU1

Thread B

J=X

X=1,Y=0,1=0,J=0

71

Quiz — Single core case

Thread A

X=1

CPU1

Thread B

J=X

X=1,Y=0,1=0,J=0

72

Java Memory Model

- Relaxed - Not even sequentially consistent!

Java Memory Model

- Relaxed - Not even sequentially consistent!
- Why? To accommodate compiler optimizations

Java Memory Model

- Relaxed - Not even sequentially consistent!
- Why? To accommodate compiler optimizations

... all of which work by caching and/or reordering
memory reads—-writes

Java Memory Model

Executions can be made sequentially consistent
on demand by using synchronization primitives
and following a set of rules.

76

Synchronization

Thread A

write(x)

unlock(L)

Thread B

lock(L)

read(x)

77

Volatile - Intuition

- volatile accesses do not count as data races
- the compiler does not touch volatile accesses

- forces reads and writes directly to memory

Volatile - Semantics are similar to locking

volatile int x; volatile int x;
void foo() { void foo() {
synchronized (x) {
X = 1; j>> X = 1;
}
} }

Volatile - Semi Formal
» Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but
- variable can also be null
- cannot block

- works for primitive types

Volatile - Semi Formal
» Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but
- variable can also be null
- cannot block
- works for primitive types

* each access goes directly to global memory

Volatile - Semi Formal
» Accesses to volatile variables behave (almost) as if they are guarded by a
“synchronized” block on itself, but
- variable can also be null
- cannot block
- works for primitive types
* each access goes directly to global memory

e volatile variables are linearizable

Volatile - Only individual accesses are “locked”

volatile int x;
void foo() {

X++;

D

volatile int x; int tmp;
void foo() {
synchronized (x) {
tmp = X;
}
tmp = tmp + 1;
synchronized (x) {
X = tmp;

}

Volatile - Typical Use Case

 One writer thread

e Several reader threads

Volatile - Typical Use Case

* One writer thread

* Several reader threads

 Commonly simple value updates:
- setaflag

- increment a counter, compute a max (single writer!)

Volatile - Typical Use Case

* One writer thread

* Several reader threads

 Commonly simple value updates:
- setaflag

- increment a counter, compute a max (single writer!)

* In case multiple writer threads: use atomics

Happens-before order

Execution order within one thread established happens-before
order

Happens-before order

Execution order within one thread established happens-before
order

Lock release and subsequent lock acquire establish happens-
before order

Happens-before order

Execution order within one thread established happens-before
order

Lock release and subsequent lock acquire establish happens-
before order

Werite to a volatile variable happens-before every subsequent
read

Happens-before order

Execution order within one thread established happens-before
order

Lock release and subsequent lock acquire establish happens-
before order

Werite to a volatile variable happens-before every subsequent
read

Happens-before order is transitive

More formal treatment

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park
College Park, MD

{imanson, pugh}@cs.umd.edu

ABSTRACT

This paper describes the new Java memory model, which
has been revised as part of Java 5.0. The model specifies
the legal behaviors for a multithreaded program; it defines
the semantics of multithreaded Java programs and partially
determines legal implementations of Java virtual machines
and compilers.

The new Java model provides a simple interface for cor-
rectly synchronized programs — it guarantees sequential con-
sistency to data-race-free programs. Its novel contribution
is requiring that the behavior of incorrectly synchronized
programs be bounded by a well defined notion of causality.
The causality requirement is strong enough to respect the

The Java Memory Model-

Sarita V. Adve
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana-Champaign, IL

sadve@cs.uiuc.edu

Meanings of Programs|: Operational Semantics
General Terms: Design, Languages

Keywords: Concurrency, Java, Memory Model, Multithread-
ing

1. INTRODUCTION

The memory model for a multithreaded system specifies
how memory actions (e.g., reads and writes) in a program
will appear to execute to the programmer, and specifically,
which value each read of a memory location may return. Ev-
ery hardware and software interface of a system that admits
multithreaded accese to shared memorv realires a memorv

More informal treatment

Advanced Topicsin ProgrammingLanguage
Java Memory model

Jeremy Manson
March 21, 2007

(r(’O(:’I(

4

P »l o) 000/57:22

Advanced Topics in Programming Languages: The Java Memory
Model

https://www.youtube.com/watch?v=WTVooKLLVT
8

Java Language Specification

ORACLE

Java SE = Java SE Specifications = Java Language Specification

17. Threads and Locks

17.1. Synchronization

17.2. Wait Sets and NMotification

17.2.1. Wait

17.2.2. Notification

17.2.3. Interruptions

17.2.4. Interactions of Waits, Notification, and Interruption
17.3. Sleep and Yield

17.4. Memory Model

17.4.1. Shared Variables

17.4.2. Actions

17.4.3. Programs and Program QCrder

17.4.4. Synchronization Order

17.4.5. Happens-before Order

17.4.6. Executions

17.4.7. Well-Formed Executions

17.4.8. Executions and Causality Requirements

17.4.9. Observable Behavior and Nonterminating Executions
17.5. final Field Semantics

17.5.1. Semantics of final Fields
17.5.2. Reading final Fields During Construction
17.5.3. Subsequent Modification of final Fields
17.5.4. Write-protected Fields

17.6. Word Tearing

17.7. Non-atomic Treatment of double and long

Multi-valent states

Consensus. Multivalent states

- Precondition: every participant proposes a value (not known to others)
- Postcondition: all participants decide on the same value (known to others)

« Conclusion: there must be a transition between one and the other.

Consensus. Multivalent states

- Precondition: every participant proposes a value (not known to others) — multivalent
- Postcondition: all participants decide on the same value (known to others) - univalent

« Conclusion: there must be a transition between one and the other — critical state

Consensus. Multivalent states

- Precondition: every participant proposes a value (not known to others) — multivalent
- Postcondition: all participants decide on the same value (known to others) - univalent

« Conclusion: there must be a transition between one and the other — critical state

-

A moves \ B moves

Consensus. Multivalent states

Precondition: every participant proposes a value (not known to others) — multivalent
Postcondition: all participants decide on the same value (known to others) - univalent

Conclusion: there must be a transition between one and the other — critical state

Final states ! O ! Initial state

- >
T

> D

T

Consensus. Multivalent states

Precondition: every participant proposes a value (not known to others) — multivalent
Postcondition: all participants decide on the same value (known to others) - univalent

Conclusion: there must be a transition between one and the other — critical state

Consensus. Multivalent states

- Precondition: every participant proposes a value (not known to others) — multivalent
- Postcondition: all participants decide on the same value (known to others) - univalent

« Conclusion: there must be a transition between one and the other — critical state

bivalent

.

g

=

Consensus. Multivalent states

Precondition: every participant proposes a value (not known to others) — multivalent
Postcondition: all participants decide on the same value (known to others) - univalent

Conclusion: there must be a transition between one and the other — critical state

© univalent

Consensus. Multivalent states

Precondition: every participant proposes a value (not known to others) — multivalent
Postcondition: all participants decide on the same value (known to others) - univalent

Conclusion: there must be a transition between one and the other — critical state

© univalent

Critical!

Assignment 12

Exercises

Exercise 1 — Wait-free implies lock free

Explain why a valid wait-free consensus protocol cannot use locks.

Exercises

Execise 2 — Valence states

Assume N=2 and inputs are either 0 or 1 for each agent. Thus in the initial state of any consensus we are
in a bivalent state (bivalent = the output can be 0 or 1). However, at termination all agents have agreed on a

single value, thus we are in a univalent state. Explain why there is a finite number of bivalent states in any
wait-free consensus protocol.

Exercises

Execise 2 — Valence states

Assume N=2 and inputs are either 0 or 1 for each agent. Thus in the initial state of any consensus we are
in a bivalent state (bivalent = the output can be 0 or 1). However, at termination all agents have agreed on a
single value, thus we are in a univalent state. Explain why there is a finite number of bivalent states in any

wait-free consensus protocol.

Exercises

Execise 2 — Valence states

Assume N=2 and inputs are either 0 or 1 for each agent. Thus in the initial state of any consensus we are
in a bivalent state (bivalent = the output can be 0 or 1). However, at termination all agents have agreed on a
single value, thus we are in a univalent state. Explain why there is a finite number of bivalent states in any

wait-free consensus protocol.

Requirements on consensus protocol

* wait-free: consensus returns in finite time for each thread
* consistent: all threads decide the same value

* valid: the common decision value is some thread's input

Exercises

Exercise 3 — Consensus among prisoners

Imagine there are 100 people in a prison. Each day the warden picks a prisoner (each prisoner with the
probability 1/100). The prisoner is led to a room with a light that he can turn on or off. Initially the light is
turned off. After the prisoner was in the room he can state "by now every prisoner was in the room at least
once”. If this statement is made and it 1s true, all prisoners are released. If the statement i1s made and 1t 18
false, all prisoners are shot. Devise a strategy that the prisoners can follow to make sure they get released
some day in the future with absolute certainty (no other communication is allowed).

Exercises

Exercise 4 — Implementing two thread consensus

Assume you have a machine with atomic registers and an atomic test-and-set operation with the following
semantics (X 1s initialized to 1):

int TAS() |

res = X;
if (res = 1) |
X =0

J

return (res)

J

Implement a two-process consensus protocol using TAS() and atomic registers.

Exercises

Exercise 4 — Implementing two thread consensus

Assume you have a machine with atomic registers and an atomic test-and-set operation with the following
semantics (X 1s initialized to 1):

int TAS() |

res = X;
if (res = 1) |
X =0

J

return (res)

J

Implement a two-process consensus protocol using TAS() and atomic registers.

Generic consensus protocol

public abstract class ConsensusProtocol<T= implements Consensus<T= |
protected T[] proposed = (T[]} mew Object[N]:
[anmounce my inpuf volue fo Ethe ofher threods

1
2
k]
4 void propose (T value) |

5 proposed [ThreadID.get ()] = value;
b

7

B

]

I
ff figure suf which thread was first
abstract public T decide(T value);

1

Figun! 5.6 The FEneric consensus protocol.

Generic consensus protocol

public abstract class ConsensusProtocol<T= implements Consensus<T= |
protected T[] proposed = (T[]} mew Object[N]:
[anmounce my inpuf volue fo Ethe ofher threods

1
2
k]
4 void propose (T value) |

5 proposed [ThreadID.get ()] = value;
b

7

B

]

I
ff figure suf which thread was first
abstract public T decide(T value);

1

Figun! 5.6 The FEneric consensus protocol.

Implement decide() method and constructor
(See consensus using FIFO)

Exercises

Exercise 5 — Linearizability

Which of the following scenarios are lineraly consistent, assuming s 1s a stack? Either mark the point of
linearization or explain why it is not linearly consistent.

