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1. Feedback: Assignment 11
2. Recap: Linearizability
3. Recap: Java memory model
4. Recap: Software Transactional Memory (STM)
5. Assignment 12
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Assignment 11

• Multisensor System. 
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LockedSensors
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Lock implementation
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Lock implementation
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LockFreeSensors
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LockFreeSensors
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Lecture 20

Without Locks II



LockFreeSensors
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LockFreeSensors
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LockFreeSensors
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If vs while ! 



Correctness



Program correctness in a sequential world

Objects encapsulate some representation of state
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Program correctness in a sequential world

Objects encapsulate some representation of state

• We don’t reason about the representation directly, but about its visibility 
from outside (via public methods) (e.g. stack.top()==3)

• State must be consistent, i.e., according to the public class invariant 
(e.g., forall x. stack.push(x).pop()==x)

• Each method satisfies its post-condition, given its pre-condition
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Program correctness in a concurrent world
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Program correctness in a concurrent world
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Execution
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Execution



Quiescent Consistency



Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-

time order, but overlapping operations might be reordered
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Quiescent consistency

requires non-overlapping operations to appear to take effect in their real-

time order, but overlapping operations might be reordered

29



Sequential Consistency



Sequential consistency

A multiprocessing system has sequential consistency if:

"...the results of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the operations 
of each individual processor appear in this sequence in the order specified 
by its program." 

- Leslie Lamport (inventor of sequential consistency)
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Sequential consistency requirements

1. All instructions are executed in order.
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Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout 
the system.
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Sequential consistency requirements

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout 
the system.

34



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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T2

q.enq(x)

q.enq(y) q.deq() -> y

Sequentially consistent (T2 

views history correct)

Quiescentially consistent 

(no quiescent period 

between these operations, 

all is good)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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NOT sequentially 

consistent (T1 has 

reordered operations)
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consistent : there is a 
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these operations which 

should “synchronize” 
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Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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q.deq() -> y

q.enq(z)

q.enq(x) q.enq(y)



Sequential consistency vs Quiescent consistency

sequential consistency and quiescent consistency are incomparable:

there exist sequentially consistent executions that are not 

quiescently consistent, and vice versa
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T1

T2

q.deq() -> y

q.enq(z)

q.enq(x)

NOT sequentially consistent 

(T1 has reordered 

operations)

Quiescentially consistent 

(no quiescent period 

between these operations, 

all is good)

q.enq(y)



Linearizability



Consistency model: Linearizability

• Linearizability provides the illusion that each operation 

applied by concurrent processes takes effect 

instantaneously between its invocation and its response. 
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Consistency model: Linearizability

• Linearizability provides the illusion that each operation 

applied by concurrent processes takes effect 

instantaneously between its invocation and its response. 

• An object for which this is true for all possible executions 

is called linearizable
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

q.deq() -> y

Example (1) 
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq() -> x

time

q.deq() -> y

Yes!

Example (1) 

47



Is this 

linearizable?

q.enq(x) q.deq() -> y

q.enq(y)

Example (2) 
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Is this 

linearizable?

q.enq(x) q.deq() -> y

time

q.enq(y)

No!

Example (2) 
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq()  -> q

q.deq() -> x

Example (3) 
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Is this 

linearizable?

q.enq(x)

q.enq(y)

q.deq()  -> y

time

q.deq() -> x

Here we got 

multiple orders! 

Yes!

Example (3) 

51



Is this 

linearizable?

Write(0) Read(1) Write(2)

Write(1)

Example (4)
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Read(1)
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Is this 

linearizable?

Write(0) Read(1)

time

Write(2)

Write(1)

No!

Example (4)
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Is this 

linearizable?

Write(0) Write(2)

Write(1) Read(1)

Example (4.5)
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Is this 

linearizable?

Write(0)

time

Write(2)

Write(1)

Yes!

Read(1)

Example (4.5)
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Linearization Point

The linearization point is the point where the method 

takes effect.
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Linearization Point

The linearization point is the point where the method 

takes effect.



Recap: Java Memory Model
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Quiz
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X = 1

I = Y

Y = 1

J = X

X = 0, Y = 0 

Thread 

A
Thread B

Can I == 0 and J == 0 at the end of the execution?



Quiz – Multicore case
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Y = 1

J = X

X = 0, Y = 0 

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0 X = 0, Y = 0 

CPU1 CPU2



Quiz – Multicore case
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Y = 1

J = X

X = 0, Y = 0 

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0 X = 0, Y = 1

CPU1 CPU2



Quiz – Multicore case
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Y = 1

J = X

X = 0, Y = 0 

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0 X = 0, Y = 1, J = 0

CPU1 CPU2



Quiz – Multicore case
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Y = 1

J = X

X = 1, Y = 1, I = 0, J = 0 

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0 X = 0, Y = 1, J = 0

CPU1 CPU2

Eventually…



Quiz – Single core case
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Y = 1

J = X

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0 

CPU1



Quiz – Single core case
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J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0 

CPU1

Compiler: It is more efficient to exchange these two unrelated instructions



Quiz – Single core case
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J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 0, Y = 0, J = 0

CPU1



Quiz – Single core case
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J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, J = 0

CPU1



Quiz – Single core case
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J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0, J = 0

CPU1



Quiz – Single core case
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J = X

Y = 1

Thread B

X = 1

I = Y

Thread A

X = 1, Y = 0, I = 0, J = 0

CPU1



Java Memory Model

• Relaxed - Not even sequentially consistent!



Java Memory Model

• Relaxed - Not even sequentially consistent!

• Why? To accommodate compiler optimizations



Java Memory Model

• Relaxed - Not even sequentially consistent!

• Why? To accommodate compiler optimizations

… all of which work by caching and/or reordering 

memory reads–writes



Java Memory Model

76

Executions can be made sequentially consistent 
on demand by using synchronization primitives 
and following a set of rules.



Synchronization

77

write(x)

unlock(L)

read(x)

Thread A

Thread B

lock(L)



- volatile accesses do not count as data races

- the compiler does not touch volatile accesses

- forces reads and writes directly to memory

Volatile - Intuition



Volatile - Semantics are similar to locking 

volatile int x;

void foo() {

x = 1;

}

volatile int x;

void foo() {

synchronized (x) {

x = 1;

}

}



• Accesses to volatile variables behave (almost) as if they are guarded by a  
“synchronized” block on itself, but

- variable can also be null

- cannot block

- works for primitive types

Volatile - Semi Formal
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• each access goes directly to global memory

Volatile - Semi Formal



• Accesses to volatile variables behave (almost) as if they are guarded by a  
“synchronized” block on itself, but

- variable can also be null

- cannot block

- works for primitive types

• each access goes directly to global memory

• volatile variables are linearizable

Volatile - Semi Formal



Volatile - Only individual accesses are “locked”

volatile int x;

void foo() {

x++;

}

volatile int x; int tmp;

void foo() {

synchronized (x) {

tmp = x;

}

tmp = tmp + 1;

synchronized (x) {

x = tmp;

}

}



Volatile - Typical Use Case

• One writer thread

• Several reader threads



Volatile - Typical Use Case

• One writer thread

• Several reader threads

• Commonly simple value updates:

- set a flag

- increment a counter, compute a max (single writer!)



Volatile - Typical Use Case

• One writer thread

• Several reader threads

• Commonly simple value updates:

- set a flag

- increment a counter, compute a max (single writer!)

• In case multiple writer threads: use atomics



Happens-before order

• Execution order within one thread established happens-before 
order
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Happens-before order

• Execution order within one thread established happens-before 
order

• Lock release and subsequent lock acquire establish happens-
before order
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Happens-before order

• Execution order within one thread established happens-before 
order

• Lock release and subsequent lock acquire establish happens-
before order

• Write to a volatile variable happens-before every subsequent 
read
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Happens-before order

• Execution order within one thread established happens-before 
order

• Lock release and subsequent lock acquire establish happens-
before order

• Write to a volatile variable happens-before every subsequent 
read

• Happens-before order is transitive

90



More formal treatment



More informal treatment

https://www.youtube.com/watch?v=WTVooKLLVT

8



Java Language Specification



Multi-valent states



Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others)
• Postcondition: all participants decide on the same value (known to others)

• Conclusion: there must be a transition between one and the other.
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Consensus. Multivalent states

• Precondition: every participant proposes a value (not known to others) – multivalent
• Postcondition: all participants decide on the same value (known to others) - univalent

• Conclusion: there must be a transition between one and the other – critical state

Critical!



Assignment 12
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Generic consensus protocol



Generic consensus protocol

Implement decide() method and constructor

(See consensus using FIFO)



Exercises


