DINFK

'@spcl_ eth

<
3
N
=
e~
Q
s
=
—
(%]
Q
)

urich

ETH-

iIse 14

Exerc

Parallel Programming

spcl.inf.ethz.c oo o
veni e [ETHZzUrich

Feedback from Assighment 13

“wewn ETHZzUrich

Feedback from Assighment 13

® isFull and isEmpty - also STM!

public boolean isEmpty()

@Override
public Boolean call() {

return count.get() == 0;
}

1)
}

public boolean isFull

@Override
public Boolean call() {
return count.get() == items.length();

spcl.inf.ethz.ch ..
venien ETHZzUrich

Feedback from Assighment 13

" If vs while for STM.retry()

public void put(final E item) {
STM.atomic(new Runnable() {
@Override
public void run() {
- if (isFull())

STM. retry();
items.update(putIndex.get(), item);
putIndex.set(next(putIndex.get()));
STM.increment(count, 1);

})

“wewn ETHZzUrich

Feedback from Assighment 13

" If and else
public E take() {
return STM.atomic(new Callable<E>() {

@Override
public E call

STM.retry();
E item =
items.refViews().apply(takeIndex.get()).get();
items.update(takeIndex.get(), null);
takeIndex.set(next(takeIndex.get()));pu
STM.increment(count, -1);
return item;

blic E take() {
return STM.atomic(new Callable<E>() {
@Override
} public E call() {
if (isEmpty())

b STM. retry();

E item =
items.refViews().apply(takeIndex.get()).get()

items.update(takeIndex.get(), null)

takeIndex.set(next(takeIndex.get())

STM.increment(count, -1);

return item;

);

1) .

“wewn ETHZzUrich

Feedback from Assighment 13

" If and else
public E take() {
return STM.atomic(new Callable<E>() {

@Override
public E call

STM.retry();
E item =
items.refViews().apply(takeIndex.get()).get();
items.update(takeIndex.get(), null);
takeIndex.set(next(takeIndex.get()));pu
STM.increment(count, -1);
return item;

blic E take() {
return STM.atomic(new Callable<E>() {
@Override
} public E call() {
if (isEmpty())

b STM. retry();

E item =
items.refViews().apply(takeIndex.get()).get()

items.update(takeIndex.get(), null)

takeIndex.set(next(takeIndex.get())

STM.increment (count, -1);

return item;

);

1) .

“wewn ETHZzUrich

Lecture Recap: MPI

Maybe the most “relevant” part of the lecture if you do scientific computing
The MPI Standard contains hundreds of functions, to use MPI you need to understand six of them

We will use the C APl when we talk about concepts
" since this is what you find in the MPI Standard and most other documentation
" code examples will be in Java

“wewn ETHZzUrich

Six-Function MPI

" MPIL_Init() <- Call this before any other MPI function
" MPI_Finalize() <- Call this when you are done

MPI_Send() <- Send a message to another process (blocking)
MPI_Recv() <- Recv a message from another process (blocking)

" MPI_Comm_rank() <- What is my ID in a communicator (i.e., MPI_COMM_WORLD)
MPI_Comm_size() <- How many processes are in a communicator

“wewn ETHZzUrich

Six-Function MPI in Java with MP)J

Can be done in Eclipse directly (see exercise)
" Can be done on the command line (important for remote work on supercomputers)

" Download MPJ and unpack it

" export MPJ_HOME=/home/youruser/path/to/mpj
“ export PATH=$MPJ_HOME/bin:$PATH

" javac-cp .:MPJ_HOME/lib/mpj.jar YourCode.java

" mpjrun.sh -np 2 YourCode

Ve — o/ = B AN T RN "vewian [ETHzlrich

Six-Function MPI in Java with MP)J

mpi.¥;
PingPong {

int BuffersSize = 1;
int Buffer[] = new int[Buffersize];

void main{String[] args) {
MPI.Init(args);
int Rank = MPI.COMM WORLD.Rank();
int NumRanks = MPI.COMM _WORLD.Size();

if (NumRanks != 2} {
System.out.println{”"to be run by 2 process only.");
System.exit(8);

if (Rank == 8) {

Buffer[@] = @;

MPI.COMM_WORLD.Send(Buffer, BufferSize, MPI.INT, 1, 8);
} else {

MPI.COMM WORLD.Recv(Buffer, Buffer5ize, MPI.INT, @8, 8);

h
MPI.Finalize();

Ve — o/ = B AN T RN "vewian [ETHzlrich

Six-Function MPI in Java with MPJ send

public void Send
int offs
int cc

mpi.¥;
PingPong {

int BuffersSize = 1;
int Buffer[] = new int[Buffersize];
Blocking send operation.
void main{String[] args) {
MPI.Init(args); buf send buffer array
int Rank = MPI.COMM WORLD.Rank(); offset
int NumRanks = MPI.COMM _WORLD.Size();

initial offset in send buffer

count number of items to send

if (NumRanks !'= 2) { datatype datatype of each item in send buffer

System.out.println{"to be run by 2 process only.")}; dest rank of destination

System.exit(8); message tag

Java binding of the MPI operation MPT SEND.
if (Rank == @) {

Buffer[@] = @;

MPI.COMM_WORLD.Send(Buffer, BufferSize, MPI.INT, 1, 8);
slse {

MPI.COMM WORLD.Recv(Buffer, Buffer5ize, MPI.INT, @8, 8);

h
MPI.Finalize();

spcl.inf.ethz.ch
3 @spcl_eth

ETH:zurich

Send

public void Send(java.lang.Object buf,
int offset,

int count,

Datatype datatype,

int dest,

int BufferSize = 1; int tag)
. - . . th MPIExceptic
int Buffer[] = new int[BufferSize]; rows xceptlon

Blocking send operation.
void main{String[] args) {
MPI.Init(args); buf send buffer array

int Rank = MPI. COMM_WORLD. F'.Eﬂk:i: }j of fset initial offset in send buffer

int NumRanks = MPI.COMM WORLD.Size();

if (NumRanks != 2) { datatype datatype of each item in send buffer

L
System.out.println(”to be run by 2 proce ss only."}; st rank of destination

System.exit(e); message tag

count number of items to send

i buff offset count datatype dest © tag of the MPI operation MPT SEND.
if {(Rank == @) {
D-

Buffer[@] = a;
MPI.COMM WORLD.Send(Buffer, 8, BufferSize, MPI.INT, 1, 8);

MPI.COMM WORLD.Recv(Buffer, 8, BufferSize, MPI.INT, @, 8);

MPI.Finalize();

12

“wewn ETHZzUrich

Message Matching

" Which receive gets which data?
Sender sends the message to the receiver rank

When it arrives we check all the unmatched, posted receives in the order they were posted

" Source, Comm, and Tag must “match” with what the receiver specified - wildcards exist for source and tag
" If we found a match we are done

If no match is found we put the message in a “unexpected messages” queue
" When a receive is posted, we check messages in this queue first

13

“wewn ETHZzUrich

Message Matching

Which receive gets which data?
Sender sends the message to the receiver rank

When it arrives we check all the unmatched, posted receives in the order they were posted

" Source, Comm, and Tag must “match” with what the receiver specified - wildcards exist for source and tag
If we found a match we are done

If no match is found we put the message in a “unexpected messages” queue
" When a receive is posted, we check messages in this queue first

Src

T datatype Tag - can be a wildcard [*]
L i 1

Buffer[0] = 0;

MPI.COMM WORLD.Send(Buffer, 0, BufferSize, MPI.INT, 1, ©);

FE
 eloe
MPI.COMM WORLD.Recv(Buffer, 0, BufferSize, MPI.INT, ©, ©);

buff offset count datatype = src tag

14

“wewn ETHZzUrich

Synchronous / Asynchronous

Apart from blocking and intermediate, there is also Asynchronous and Synchronous send:
When a synchronous send completes, you know

" You can overwrite the send buffer (same like “normal” send)

" The receiver has received the message - Huh? What else could happen?

" In asynchroneous send MPI can copy your message to an internal buffer! Now you can reuse the send buffer, but you
don’t know anything about the receiver.

15

spcl.inf.ethz.ch

Blocking vs Non-blocking / Immediate

useful!

time

time

Sender

Send ()

CPU waits

Sender

Isend()

CPU does
computation

Wait ()
CPU waits

The Send/Recv in our six-function MPI are blocking
Meaning: When they return we can overwrite the send buffer / read the receive buffer
This means we are wasting time! - Use Isend/Irecv + Wait to overlap “waiting” with doing something

“Blocking”

“Non Blocking”

EXPRESS

Receiver

Recv ()

CPU waits

Receiver
Irecv()

CPU does
computation

Wait ()
CPU waits

3 @spcl_eth

ETH:zurich

16

“wewn ETHZzUrich

Communicators

All processes are a part of the MPI_COMM_WORLD communicator

" MPI_COMM_WORLD exists automatically

Messages do not “match” across communicators (good to provide isolation)
Communicators can be created for arbitrary subsets of processes

" MPI_Comm_dup() -- create a copy of a communicators (same procs in it but messages do not cross-match)
" MPI_Comm_split() - divide a communicator in two according two colors given to processes

For this lecture, we only care about MPI_COMM_WORLD

17

“wewn ETHZzUrich

Collectives

When using MPI, a couple of patterns always repeat:

" | have some data on one rank, but | want all ranks to have it

| want to sum up data from all ranks and have the result on rank O

| want to sum up data from all ranks and have the result on all ranks

With our six function MPI this is easy to solve!

Just a for-loop from 0..P-1 with some sends and receives...
" This is slow (you learned about tree-based reductions in the lecture)
" It would be really annoying to write this for every bigger MPI code

18

“wewn ETHZzUrich

Collectives

When using MPI, a couple of patterns always repeat:

= | have some data on one rank, but | want all ranks to have it = Proadcast

" | want to sum up data from all ranks and have the result on rank O reduce
| want to sum up data from all ranks and have the result on all ranks

all-reduce

With our six function MPI this is easy to solve!

Just a for-loop from 0..P-1 with some sends and receives...
" This is slow (you learned about tree-based reductions in the lecture)
" It would be really annoying to write this for every bigger MPI code

19

“wewn ETHZzUrich

Collectives

" MPI defines these patterns for us!

data ——

Ao

«— processes

20

“wewn ETHZzUrich

Collectives

" MPI defines these patterns for us!

data ——

A9

Local buffer of rank O can contain up to 6 elements.

+— processes

At the beginning, it holds only element A,

21

urich

ETH:

3 @spcl_eth

<
2
N
&=
R
9
N
=
K]
Q
")

Collectives

A
AD
A
A
A

broadcast

scalter

gather

allgather

alltoall

o

<

MPI defines these patterns for us!

data ——

5955920/ —

22

ETH:zurich

3 @spcl_eth

<
2
N
&=
R
9
N
=
K]
Q
")

» MPI.PROD
» MPIL.SUM
» MPIMIN

» MPL.MAX
» MPLLAND

23

» MPI.BAND

» MPI.LOR

» MPI.BOR
» MPI.LXOR

» MPI.BXOR

» MPI.MINLOC
» MPIL.MAXLOC

15

15
15
15
15
15

—

reduce
allreduce

Data

- o

_—

Processes

Fa

BD CO DU ED
Byl Cg| gl Ep
Bl'.'l CU DU EU
EE CS DE E5

A
AD
A
A
A

AU BU CU DU EU
AO BD CU DU EU
AU BU CU DU EU
Aa|Ba|Ca|PalEs
A3 B3 C3 D3 E3
As|Ba|Ca|Pa|Ea|Fa

Ag
Ao
Ag
Asg

broadcast

scatter

gather
allgather

alltoall

o

o

MPI defines these patterns for us!

data ——

5955920/ —

Collectives

“wewn ETHZzUrich

Exercise 1

" Set up MPJ in Eclipse and Run a “Hello World” example, i.e., print the rank of each process in
MPI_COMM_WORLD.

24

“wewn ETHZzUrich

Exercise 2

How can we time how long a message takes to be delivered?

We do not have synchronized timers across processes!

Idea: Send a message back and forth, so we can time on one process how long this takes and divide by two.

25

“wewn ETHZzUrich

Exercise 3

" Implement a parallel prime sieve, each process works on different data
" Use collective communication where it makes sense

26

“wewn ETHZzUrich

Exercise 4

" Implement your own reduce for the operator + on MPI_COMM_WORLD

Use send/recv (or variants) to implement all communication

Do not use more than O(P*log(P)) messages in total (for P processes)

27

	Slide 1
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Lecture Recap: MPI
	Six-Function MPI
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Message Matching
	Message Matching
	Synchronous / Asynchronous
	Blocking vs Non-blocking / Immediate
	Communicators
	Collectives
	Collectives
	Collectives
	Collectives
	Collectives
	Collectives
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

