
spcl.inf.ethz.ch

@spcl_eth

Parallel Programming Exercise 14



spcl.inf.ethz.ch

@spcl_eth

2

Feedback from Assignment 13



spcl.inf.ethz.ch

@spcl_eth

 isFull and isEmpty – also STM!

3

Feedback from Assignment 13

public boolean isEmpty() {
        return STM.atomic(new Callable<Boolean>() {
            @Override
            public Boolean call() {
                return count.get() == 0;
            }
        });
    }

    public boolean isFull() {
        return STM.atomic(new Callable<Boolean>() {
            @Override
            public Boolean call() {
                return count.get() == items.length();
            }
        });
    }



spcl.inf.ethz.ch

@spcl_eth

 If vs while for STM.retry()

4

Feedback from Assignment 13

public void put(final E item) {
        STM.atomic(new Runnable() {
            @Override
            public void run() {
                if (isFull())
                    STM.retry();
                items.update(putIndex.get(), item);
                putIndex.set(next(putIndex.get()));
                STM.increment(count, 1);
            }
        });
    }



spcl.inf.ethz.ch

@spcl_eth

 If and else

5

Feedback from Assignment 13

public E take() {
  return STM.atomic(new Callable<E>() {
      @Override
      public E call() {
          if (isEmpty())
              STM.retry();
          E item = 
items.refViews().apply(takeIndex.get()).get();
          items.update(takeIndex.get(), null);
          takeIndex.set(next(takeIndex.get()));
          STM.increment(count, -1);
          return item;
      }
  });
}

public E take() {
  return STM.atomic(new Callable<E>() {
      @Override
      public E call() {
          if (isEmpty())
              STM.retry();
          else {

          E item = 
items.refViews().apply(takeIndex.get()).get();
          items.update(takeIndex.get(), null);
          takeIndex.set(next(takeIndex.get()));
          STM.increment(count, -1);
          return item;
}

      }
  });
}



spcl.inf.ethz.ch

@spcl_eth

 If and else

6

Feedback from Assignment 13

public E take() {
  return STM.atomic(new Callable<E>() {
      @Override
      public E call() {
          if (isEmpty())
              STM.retry();
          E item = 
items.refViews().apply(takeIndex.get()).get();
          items.update(takeIndex.get(), null);
          takeIndex.set(next(takeIndex.get()));
          STM.increment(count, -1);
          return item;
      }
  });
}

public E take() {
  return STM.atomic(new Callable<E>() {
      @Override
      public E call() {
          if (isEmpty())
              STM.retry();
          else {

          E item = 
items.refViews().apply(takeIndex.get()).get();
          items.update(takeIndex.get(), null);
          takeIndex.set(next(takeIndex.get()));
          STM.increment(count, -1);
          return item;
}

      }
  });
}



spcl.inf.ethz.ch

@spcl_eth

 Maybe the most “relevant” part of the lecture if you do scientific computing

 The MPI Standard contains hundreds of functions, to use MPI you need to understand six of them

 We will use the C API when we talk about concepts 
 since this is what you find in the MPI Standard and most other documentation

 code examples will be in Java

7

Lecture Recap: MPI



spcl.inf.ethz.ch

@spcl_eth

 MPI_Init()  <- Call this before any other MPI function

 MPI_Finalize() <- Call this when you are done

 MPI_Send() <- Send a message to another process (blocking)

 MPI_Recv() <- Recv a message from another process (blocking)

 MPI_Comm_rank()  <- What is my ID in a communicator (i.e., MPI_COMM_WORLD)

 MPI_Comm_size() <- How many processes are in a communicator

8

Six-Function MPI



spcl.inf.ethz.ch

@spcl_eth

 Can be done in Eclipse directly (see exercise)

 Can be done on the command line (important for remote work on supercomputers)

 Download MPJ and unpack it

 export MPJ_HOME=/home/youruser/path/to/mpj

 export PATH=$MPJ_HOME/bin:$PATH

 javac -cp .:MPJ_HOME/lib/mpj.jar YourCode.java

 mpjrun.sh -np 2 YourCode

9

Six-Function MPI in Java with MPJ



spcl.inf.ethz.ch

@spcl_eth

10

Six-Function MPI in Java with MPJ



spcl.inf.ethz.ch

@spcl_eth

11

Six-Function MPI in Java with MPJ



spcl.inf.ethz.ch

@spcl_eth

12

Six-Function MPI in Java with MPJ

buff offset count datatype dest tag

buff offset count datatype src tag



spcl.inf.ethz.ch

@spcl_eth

 Which receive gets which data?

 Sender sends the message to the receiver rank

 When it arrives we check all the unmatched, posted receives in the order they were posted
  Source, Comm, and Tag must “match” with what the receiver specified – wildcards exist for source and tag

 If we found a match we are done

 If no match is found we put the message in a “unexpected messages” queue
 When a receive is posted, we check messages in this queue first

13

Message Matching



spcl.inf.ethz.ch

@spcl_eth

 Which receive gets which data?

 Sender sends the message to the receiver rank

 When it arrives we check all the unmatched, posted receives in the order they were posted
  Source, Comm, and Tag must “match” with what the receiver specified – wildcards exist for source and tag

 If we found a match we are done

 If no match is found we put the message in a “unexpected messages” queue
 When a receive is posted, we check messages in this queue first

14

Message Matching

buff offset count datatype dest Tag – can be a wildcard [*]

buff offset count datatype src tag

src

dest (Rank == 1)



spcl.inf.ethz.ch

@spcl_eth

 Apart from blocking and intermediate, there is also Asynchronous and Synchronous send:

 When a synchronous send completes, you know 
 You can overwrite the send buffer (same like “normal” send)

 The receiver has received the message – Huh? What else could happen?

 In asynchroneous send MPI can copy your message to an internal buffer! Now you can reuse the send buffer, but you 
don’t know anything about the receiver.

15

Synchronous / Asynchronous



spcl.inf.ethz.ch

@spcl_eth

 The Send/Recv in our six-function MPI are blocking

 Meaning: When they return we can overwrite the send buffer / read the receive buffer

 This means we are wasting time! – Use Isend/Irecv + Wait to overlap “waiting” with doing something 
useful!

16

Blocking vs Non-blocking / Immediate



spcl.inf.ethz.ch

@spcl_eth

 All processes are a part of the MPI_COMM_WORLD communicator

 MPI_COMM_WORLD exists automatically

 Messages do not “match” across communicators (good to provide isolation)

 Communicators can be created for arbitrary subsets of processes
 MPI_Comm_dup()  -- create a copy of a communicators  (same procs in it but messages do not cross-match)

 MPI_Comm_split() – divide a communicator in two according two colors given to processes

 …

 For this lecture, we only care about MPI_COMM_WORLD

17

Communicators



spcl.inf.ethz.ch

@spcl_eth

 When using MPI, a couple of patterns always repeat:
 I have some data on one rank, but I want all ranks to have it

 I want to sum up data from all ranks and have the result on rank 0

 I want to sum up data from all ranks and have the result on all ranks

 With our six function MPI this is easy to solve!

 Just a for-loop from 0..P-1 with some sends and receives… 
 This is slow (you learned about tree-based reductions in the lecture)

 It would be really annoying to write this for every bigger MPI code

18

Collectives



spcl.inf.ethz.ch

@spcl_eth

 When using MPI, a couple of patterns always repeat:
 I have some data on one rank, but I want all ranks to have it

 I want to sum up data from all ranks and have the result on rank 0

 I want to sum up data from all ranks and have the result on all ranks

 With our six function MPI this is easy to solve!

 Just a for-loop from 0..P-1 with some sends and receives… 
 This is slow (you learned about tree-based reductions in the lecture)

 It would be really annoying to write this for every bigger MPI code

19

Collectives

broadcast

reduce

all-reduce



spcl.inf.ethz.ch

@spcl_eth

 MPI defines these patterns for us!

20

Collectives



spcl.inf.ethz.ch

@spcl_eth

 MPI defines these patterns for us!

21

Collectives

Local buffer of rank 0 can contain up to 6 elements.

At the beginning, it holds only element A0



spcl.inf.ethz.ch

@spcl_eth

 MPI defines these patterns for us!

22

Collectives



spcl.inf.ethz.ch

@spcl_eth

 MPI defines these patterns for us!

23

Collectives



spcl.inf.ethz.ch

@spcl_eth

 Set up MPJ in Eclipse and Run a “Hello World” example, i.e., print the rank of each process in 
MPI_COMM_WORLD.

24

Exercise 1



spcl.inf.ethz.ch

@spcl_eth

 How can we time how long a message takes to be delivered?

 We do not have synchronized timers across processes!

Idea: Send a message back and forth, so we can time on one process how long this takes and divide by two.

25

Exercise 2



spcl.inf.ethz.ch

@spcl_eth

 Implement a parallel prime sieve, each process works on different data

 Use collective communication where it makes sense

26

Exercise 3



spcl.inf.ethz.ch

@spcl_eth

 Implement your own reduce for the operator + on MPI_COMM_WORLD

 Use send/recv (or variants) to implement all communication

 Do not use more than O(P*log(P)) messages in total (for P processes)

27

Exercise 4


	Slide 1
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Feedback from Assignment 13
	Lecture Recap: MPI
	Six-Function MPI
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Six-Function MPI in Java with MPJ
	Message Matching
	Message Matching
	Synchronous / Asynchronous
	Blocking vs Non-blocking / Immediate
	Communicators
	Collectives
	Collectives
	Collectives
	Collectives
	Collectives
	Collectives
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

