
Parallel Programming
Exercise Session 2
Spring 2020

Preparations

1. Import assignment2.zip in Eclipse

2. Run the projects unit-tests in Eclipse

3. Understand output of unit-tests
• Did the test fail or succeed?
• Why did the test fail?

4. Start coding and keep checking if tests pass

2

Eclipse: import project

3

Eclipse: import project

4

Eclipse: import project

5

Eclipse: add to git

6

Team -> Share Project ...

Eclipse: add to git

7Important: Select same directory as for assignment 1

Eclipse: running JUnit tests (1)

8

Eclipse: running JUnit tests (2)

9

Code Style

• Try to make your code as readable as possible
(Use Eclipse formatter <CTRL>+<SHIFT>+F)

• Include high-level comments that explain why you are doing
something (much better than a line-by-line commentary of your
code)

10

Code Style / Errors

Keep attention what Eclipse reports:

11

12

Java Doc (http://docs.oracle.com/javase/7/docs/api/)

http://docs.oracle.com/javase/7/docs/api/

13

Java Doc (http://docs.oracle.com/javase/7/docs/api/)

Detailed Documentation:
• Class Description
• Inheritance Hierarchy
• Method Summary

Packages

Classes

http://docs.oracle.com/javase/7/docs/api/

03.03.17 Parallel Programming – SS 2016 14

Method Signature Semantic description
what the method does

Parameter description

Possible occurring
errors

Task A

To start with, print to the console "Hello Thread!" from a new
thread. How do you check that the statement was indeed printed
from a thread that is different to the main thread of your
application? Furthermore, ensure that you program (i.e., the
execution of main thread) finishes only after the thread execution
finishes.

15

Task A: How to create and start a new thread?

16

option 1: Extend class Thread

option 2: Implement Runnable

Task B

Run the method computePrimeFactors in a single thread other than
the main thread. Measure the execution time of sequential
execution (on the main thread) and execution using a single thread.
Is there any noticeable difference?

17

Task C

Design and run an experiment that would measure the overhead of
creating and executing a thread.

18

Task C

19

option 1: Measures real time elapsed including time when the thread is not running.

option 2: Measures thread cpu time excluding time when the thread is not running.

Task D

Before you parallelize the loop in Task E, design how the work
should be split between the threads by implementing method
PartitionData. Each thread should process roughly equal amount of
elements. Briefly describe you solution and discuss alternative ways
to split the work?

20

Task D: Split the work between the threads

21

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

?

?

?

Task D: Split the work between the threads

22

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

d) PartitionData(20,3)

both c) and d) are correct solutions for this exercise

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• ??
• ??

• And (length<=0 or numPartitions<=0)?
• ??
• ??

23

PartitionData(int length, int numPartitions) { … }

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• Throw an exception?
• Return m = min(m,n) splits?

• And (length<=0 or numPartitions<=0)?
• Throw an exception?
• Create a default return value (e.g. new ArraySplit[0])?

• In any case, write your assumptions in JavaDoc

24

PartitionData(int length, int numPartitions) { … }

Task E

Parallelize the loop execution in computePrimeFactors using a
configurable amount of threads.

25

Task F

Think of how would a plot that shows the execution speed-up of
your implementation, for n = 1, 2, 4, 8, 16, 32, 64, 128 threads and
the input array size of 100, 1000, 10000, 100000 look like

26

Task G

Measure the execution time of your parallel implementation for n =
1, 2, 4, 8, 16, 32, 64, 128 threads and the input array size of
input.length = 100, 1000, 10000, 100000. Discuss the differences in
the two plots from task F and G.

27

