
Parallel Programming
Exercise Session 3
Spring 2020

Java Review

2

Java packages/access modifiers

(Chapter 9.8) Visibility Modifiers
(Chapter 11.14) Protected Data and Methods

Try/Catch

(Chapter 12.1 - 12.7) Exception Handling

Feedback: Exercise 2

3

Task D

• We covered static partitioning but other types are possible, e.g.,
dynamic, guided, etc. See list of options provided by OpenMP

• We implemented parallel loop as part of our exercise — in
practice use existing libraries that are well tested, concise and
faster than your implementation, e.g. OpenMP for C++ or parallel
streams for Java 8

4

https://software.intel.com/en-us/articles/openmp-loop-scheduling

Exercise 3

5

Counter

Let’s count the number of times a given event occurs

6

public interface Counter {

 public void increment();

 public int value();

}

Counter

Let’s count the number of times a given event occurs

7

public interface Counter {

 public void increment();

 public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

 // perform some work

 counter.increment();

}

// progress thread

while (isWorking) {

 System.out.println(counter.value());

}

8

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

9

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

10

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

11

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

12

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

13

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

14

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

15

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

16

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print
30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

Counter

There are many threads accessing the counter at the same time.
How should we implement it such that there are no conflicts?
You will try different solutions including:

➔Task A: SequentialCounter

➔Task B: SynchronizedCounter

➔Task E (optional): AtomicCounter

17

Task A – Sequential counter

➔ Implement a sequential version of the Counter in
SequentialCounter class that does not use any synchronization.

➔ In taskASequential we provide a method that runs a single thread
which increments the counter. Inspect the code and understand
how it works.

➔ Verify that the SequentialCounter works properly when used with
a single thread (the test testSequentialCounter should pass).

18

Task A – Parallel counter

➔ Run the code in taskAParallel which creates several threads that
all try to increment the counter at the same time.

➔ Notice how the expected value of counter at the end of execution
is not what we would expect. Discuss why this is the case.

19

Task B – Synchronized counter

➔ Implement a different thread safe version of the Counter in
SynchronizedCounter. In this version use the standard primitive
type int but synchronize the access to the variable by inserting
synchronized blocks.

➔ Run the code in taskB.

20

Synchronization

21

➔ Every reference type contains a lock inherited from the Object
class

➔ Primitive fields can be locked only via their enclosing objects

➔ Locking arrays does not lock their elements

➔ A lock is automatically acquired when entering and released
when exiting a synchronized block

➔ Locks will be covered in more detail later in the course

Synchronization

22

➔ Synchronized method locks the object owning the method

➔ Synchronized keyword obtains a lock on the parameter object

➔ A thread can obtain multiple locks (by nesting the synchronized blocks)

foo.xMethod() //lock on foo

synchronized (bar) { … } //lock on bar

23

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

24

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock
increment()
unlock

25

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock

Lock:
Thread 1

26

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Lock:
Thread 1

27

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3
Thread 2

Lock:
Thread 1

28

11

Counter

11

Thread 1

0

Thread 2

0

Thread 3

lock

Blocked:
Thread 3
Thread 2

Lock:
Thread 1

29

12

Counter

12

Thread 1

0

Thread 2

0

Thread 3

lock
increment()
unlock

Blocked:
Thread 3
Thread 2

Task C

Whenever the Counter is incremented, keep track which thread
performed the increment (you can print out the thread-id to the
console). Can you see a pattern in how the threads are scheduled?
Discuss what might be the reason for this behaviour.

30

Task D

➔ Implement a FairThreadCounter that ensures that different
threads increment the Counter in an round-robin fashion. In
round-robin scheduling the threads perform the increments in
circular order. That is, two threads with ids 1 and 2 would
increment the value in the following order 1, 2, 1, 2, 1, 2, etc.

➔ You should implement the scheduling using the wait and notify
methods.

➔ Can you think of implementation that does not use wait and
notify methods?

31

Wait and Notify Recap

➔ Object provides wait() and notify() methods

➔ To call wait() on an object thread must own its lock

➔ Thread releases the lock and is added to the “waiting list” for that object

➔ Thread waits until a notify method is called on the object

➔ notify() removes one (arbitrary) thread from the object’s “waiting list”

➔ notifyAll() removes all the threads

32

33

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

34

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Thread 1 must increment first!

35

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Thread 1 must increment first!

0

lock

0

36

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock
check

Blocked:
Thread 3

Thread 1 must increment first!

37

0

Counter

0

Thread 1

0

Thread 2

Thread 3

lock
check
wait

Waiting:
Thread 2

Thread 1 must increment first!

Blocked:
Thread 3

0

38

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lockThread 1 must increment first!

Blocked:
Thread 3

0
Both Thead 1 and Thread 3 could obtain lock.

Let’s assume Thread 1 succeeds.

39

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock
check

Thread 1 must increment first!

Blocked:
Thread 3

0

40

1

Counter

1

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock
check
increment

Thread 1 must increment first!

Blocked:
Thread 3

0

41

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock
check
increment
notify

Thread 1 must increment first!

Blocked:
Thread 3

0

42

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock
check
increment
notify
unlock

Thread 1 must increment first!

Blocked:
Thread 3

0

Task E (Optional) – Atomic counter

Implement a thread safe version of the Counter in AtomicCounter.
In this version we will use and implementation of the int primitive
value, called AtomicInteger, that can be safely used from multiple
threads.

43

Atomic Variables

44

➔ Set of classes providing implementation of atomic variables in
Java, e.g., AtomicInteger, AtomicLong, ...

➔ An operation is atomic if no other thread can see it partially
executed. Atomic as in “appears indivisible”

➔ Implemented using special hardware primitives (instructions) for
concurrency. Will be covered in detail later in the course

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

Task F (Optional) – Atomic vs Synchronized
counter

Experimentally compare the AtomicCounter and
SynchronizedCounter implementations by measuring which one is
faster. Observe the differences in the CPU load between the two
versions. Can you explain what is the cause of different performance
characteristics?

- Vary the load per thread

- Vary the number of threads

45

Task G (Optional)

Implement a thread that measures execution progress. That is,
create a thread that observes the values of the Counter during the
execution and prints them to the console. Make sure that the thread
is properly terminated once all the work is done.

46

47

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

Printer

48

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

Print
10!

Printer value()

49

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

Printer

50

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

Printer

51

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

Print
25!

Printer value()

52

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

Printer

53

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print
30!

Printer value()

