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Feedback: Exercise 3
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Counter

Let’s count number of times a given event occurs
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public interface Counter {

  public void increment();

  public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

  // perform some work

  counter.increment();

}

// progress thread

while (isWorking) {

  System.out.println(counter.value());

}
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Task A: SequentialCounter

public class SequentialCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

  ??

    }

}
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Task A: SequentialCounter

public class SequentialCounter implements Counter {

    private int c = 0;

    public void increment() {

        c++;

    }

    public int value() {

        return c;

    }

}
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Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

  ??

    }

}
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Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

    private int c = 0;

    public synchronized void increment() {

        c++;

    }

    public synchronized int value() {

        return c;

    }

}
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Task D

● Implement a FairThreadCounter that ensures that different 
threads increment the Counter in an round-robin fashion. That is, 
two threads with ids 1 and 2 would increment the value in the 
following order 1, 2, 1, 2, 1, 2, etc. You should implement the 
scheduling using the wait and notify methods. 

● Can you think of implementation that does not use wait and 
notify methods?

● (Optional) Extend your implemenation to work with arbitrary 
number of threads (instead of only 2) that increment the counter 
in round-robin fashion.
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Wait and Notify Recap

• Object provides wait() and notify() methods

• To call wait() on an object thread must own its lock

• Thread releases the lock and is added to the “waiting list” for that object

• Thread waits until a notify method is called on the object

• notify() removes one (arbitrary) thread from the object’s “waiting list”

• notifyAll() removes all the threads
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How to find the difference between notify vs notifyAll?
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https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#notify()
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Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {

   

    public void increment() {

       ??

    }

    public int value() {

  ??

    }

}
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Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}
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Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();



50

Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {    

    private AtomicInteger c = new AtomicInteger(0);

    public void increment() {

        c.incrementAndGet();

    }

    public int value() {

        return c.get();

    }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

1. load c → 0 
2. c + 1 → 1 
3. store c ← 1 

not atomic atomic

An operation is atomic if no other 
thread can see it partly executed. 
Atomic as in “appears indivisible”.

However does not mean it’s 
implemented as single instruction.



Exercise 4: Pipelining Recap
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Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if it has constant latency
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Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Over at UZH the law students have been tasked with writing a legal essay about the 
philosophy of Swiss law. In order to write the essay, each student needs to read four 
different books on the subject, denoted as A, B, C and D (in this order).

This exercise is created by Lasse Meinen and part of the unofficial VIS 
Prüfungsvorbereitungsworkshop Skripts available at:

https://vis.ethz.ch/de/services/pvw-scripts/

https://vis.ethz.ch/de/services/pvw-scripts/


Library
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any 
books before they’re done reading all of them. How long will it take for 4 students until all 
of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the 
philosophy of Swiss law. In order to write the essay, each student needs to read four 
different books on the subject, denoted as A, B, C and D (in this order).
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any 
books before they’re done reading all of them. How long will it take for 4 students until all 
of them have started writing their essays?

student 1

student 2

student 3

student 4
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to 
return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to 
return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked 
for a particular student, not for the whole pipeline.
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to 
return a book before they can start on the next one. How long will it now take for 4 
students until all of them have started writing their essays? 

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 120 minutes

Balanced?
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Every student takes the exact same amount of time to read a book, concretely: 

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes 

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 120 minutes

Balanced?

No

The pipeline is not balanced 
since the latency is not constant 



Exercise 4
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Bob, Mary, John and Alice

Task 1 - Pipelining
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50 min 90 min 15 min

a) Laundry time using 
sequential order

b) Design a strategy with 
better laundry time

c) How would the laundry 
time improve if they 
bought a new dryer?



Task 2 - Pipelining II

Assume a processor that can each cycle issue either:
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

How many cycles are required to execute following loops?
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for (int i = 0; i < data.length; i += 4) {

    j = i + 1;

    k = i + 2;

    l = i + 3;        

    data[i] = data[i] * data[i];

    data[j] = data[j] * data[j];

    data[k] = data[k] * data[k];

    data[l] = data[l] * data[l];        

}

for (int i = 0; i < data.length; i += 2) {

    j = i + 1;

    data[i] = data[i] * data[i];

    data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

    data[i] = data[i] * data[i];

}



Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?
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for (int i=1; i<size; i++) {    // for loop: i from 1 to (size-1)

    if (data[i-1] > 0)          // If the previous value is positive

        data[i] = (-1)*data[i]; // change the sign of this value

}                               // end for loop

for (int i=0; i<size; i++) {      // for loop: i from 0 to (size-1)

    data[i] = Math.sin(data[i]);  // calculate sin() of the value

}                                 // end for loop


