
Parallel Programming
Exercise Session 4
Spring 2020

Feedback: Exercise 3

2

Counter

Let’s count number of times a given event occurs

3

public interface Counter {

 public void increment();

 public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

 // perform some work

 counter.increment();

}

// progress thread

while (isWorking) {

 System.out.println(counter.value());

}

4

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

5

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

6

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

7

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

8

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

9

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

10

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

11

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

12

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print
30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

13

Task A: SequentialCounter

public class SequentialCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

14

Task A: SequentialCounter

public class SequentialCounter implements Counter {

 private int c = 0;

 public void increment() {

 c++;

 }

 public int value() {

 return c;

 }

}

15

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task A: SequentialCounter

public void increment() {

 c++;

}

Task A: SequentialCounter

16

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

Task A: SequentialCounter

17

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

Task A: SequentialCounter

18

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

1. load c → 0
assume c is initialized to value 0

Task A: SequentialCounter

19

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

1. load c → 0

2. load c → 0

assume c is initialized to value 0

Task A: SequentialCounter

20

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

2. load c → 0

1. load c → 0
3. c + 1 → 1
4. store c ← 1

assume c is initialized to value 0

Task A: SequentialCounter

21

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

1. load c → 0
3. c + 1 → 1
4. store c ← 1

2. load c → 0
5. c + 1 → 1
6. store c ← 1

assume c is initialized to value 0

Task A: SequentialCounter

22

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting
access!

How is this
possible?

public void increment() {

 c++;

}

public void increment() {

 c = c + 1;

}

1. load c → 0
3. c + 1 → 1
4. store c ← 1

2. load c → 0
5. c + 1 → 1
6. store c ← 1

note that
increment is
not atomic!

assume c is initialized to value 0

23

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

24

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

 private int c = 0;

 public synchronized void increment() {

 c++;

 }

 public synchronized int value() {

 return c;

 }

}

25

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

 c++;

}

26

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

 c++;

}

thread 1

synchronized void increment() {

 c++;

}

Thread 2 tries to acquire lock on counter.
As the lock is already aquired by thread 1

the thread 2 suspends its execution.

27

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

 c++;

}

thread 1

synchronized void increment() {

 c++;

}

Thread 2 tries to acquire lock on counter.
As the lock is already aquired by thread 1

the thread 2 suspends its execution.

28

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

 c++;

}

synchronized void increment() {

 c++;

}

releases lock upon method exit

29

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

 c++;

}

synchronized void increment() {

 c++;

}

thread 2

Task D

● Implement a FairThreadCounter that ensures that different
threads increment the Counter in an round-robin fashion. That is,
two threads with ids 1 and 2 would increment the value in the
following order 1, 2, 1, 2, 1, 2, etc. You should implement the
scheduling using the wait and notify methods.

● Can you think of implementation that does not use wait and
notify methods?

● (Optional) Extend your implemenation to work with arbitrary
number of threads (instead of only 2) that increment the counter
in round-robin fashion.

30

Wait and Notify Recap

• Object provides wait() and notify() methods

• To call wait() on an object thread must own its lock

• Thread releases the lock and is added to the “waiting list” for that object

• Thread waits until a notify method is called on the object

• notify() removes one (arbitrary) thread from the object’s “waiting list”

• notifyAll() removes all the threads

31

32

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

33

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lockthread 2

34

0

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Suspended:
Thread 3

thread 2

0

35

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock
check

thread 2

Blocked:
Thread 3

36

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock
check
wait

Waiting:
Thread 2

Blocked:
Thread 3

37

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

thread 3

0

Waiting:
Thread 2

38

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock
check

thread 3

0

Waiting:
Thread 2

39

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock
check
wait

0

Waiting:
Thread 2
Thread 3

40

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Waiting:
Thread 2
Thread 3

thread 1

41

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock
check

Waiting:
Thread 2
Thread 3

thread 1

42

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock
check
increment

Waiting:
Thread 2
Thread 3

thread 1

43

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock
check
increment
notify

thread 1

Waiting:
Thread 2
Thread 3

44

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock
check
increment
notify
unlock

Waiting:
Thread 2
Thread 3

45

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock
check
increment
notify
unlock

Waiting:
Thread 2
Thread 3

Which thread will be woken
up and acquire the lock?

Which thread will be woken up if
we use notifyAll instead of notify?

How to find the difference between notify vs notifyAll?

46

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#notify()

47

Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {

 public void increment() {

 ??

 }

 public int value() {

 ??

 }

}

48

Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

49

Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

50

Task E: AtomicCounter (Optional)

public class AtomicCounter implements Counter {

 private AtomicInteger c = new AtomicInteger(0);

 public void increment() {

 c.incrementAndGet();

 }

 public int value() {

 return c.get();

 }

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

1. load c → 0
2. c + 1 → 1
3. store c ← 1

not atomic atomic

An operation is atomic if no other
thread can see it partly executed.
Atomic as in “appears indivisible”.

However does not mean it’s
implemented as single instruction.

Exercise 4: Pipelining Recap

51

Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

52

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline

53

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

54

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if it has constant latency

55

Library

56

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

This exercise is created by Lasse Meinen and part of the unofficial VIS
Prüfungsvorbereitungsworkshop Skripts available at:

https://vis.ethz.ch/de/services/pvw-scripts/

https://vis.ethz.ch/de/services/pvw-scripts/

Library

57

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

Library

58

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

student 1

student 2

student 3

student 4

Library

59

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Library

60

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked
for a particular student, not for the whole pipeline.

Library

61

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e. the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 120 minutes

Balanced?

Library

62

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 120 minutes

Balanced?

No

The pipeline is not balanced
since the latency is not constant

Exercise 4

63

Bob, Mary, John and Alice

Task 1 - Pipelining

64

50 min 90 min 15 min

a) Laundry time using
sequential order

b) Design a strategy with
better laundry time

c) How would the laundry
time improve if they
bought a new dryer?

Task 2 - Pipelining II

Assume a processor that can each cycle issue either:
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

How many cycles are required to execute following loops?

65

for (int i = 0; i < data.length; i += 4) {

 j = i + 1;

 k = i + 2;

 l = i + 3;

 data[i] = data[i] * data[i];

 data[j] = data[j] * data[j];

 data[k] = data[k] * data[k];

 data[l] = data[l] * data[l];

}

for (int i = 0; i < data.length; i += 2) {

 j = i + 1;

 data[i] = data[i] * data[i];

 data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

 data[i] = data[i] * data[i];

}

Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?

66

for (int i=1; i<size; i++) { // for loop: i from 1 to (size-1)

 if (data[i-1] > 0) // If the previous value is positive

 data[i] = (-1)*data[i]; // change the sign of this value

} // end for loop

for (int i=0; i<size; i++) { // for loop: i from 0 to (size-1)

 data[i] = Math.sin(data[i]); // calculate sin() of the value

} // end for loop

