Parallel Programming
Exercise Session 6

Spring 2020

Feedback: Exercise 5

Recall: Amdahl's vs Gustafson's Law

The key is goal to:

=> Understand the main difference and implications
(i.e., when to use which formula)

=> Know how to derive formula based on the understanding,
Not because you memorized them for the exam

Recall: Amdahl's vs Gustafson's Law

The key is goal to:

=>» Understand the main difference and implications
(i.e., when to use which formula)

=> Know how to derive formula based on the understanding,
Not because you memorized them for the exam

Recall: Amdahl's vs Gustafson's Law

Amdahl's Law Gustafson's Law

>

p=4

Time , :
Less Time for the parallel part More work in the same Time

Recall: Amdahl's vs Gustafson's Law

The key is goal to:

=> Understand the main difference and implications
(i.e., when to use which formula)

=> Know how to derive formula based on the understanding,
Not because you memorized them for the exam

Amdahl's Law Derivation

Amdahl's Law

T.f { p=4 } T,f T, -sequential time
f -sequential fraction
T,(1-f)/p {
T, Tp - parallel time on p processors
Tp = T, f + Tl(l—f)/p

Sp - speedup
Sp = T1/Tp
S, = 1/(f + (1-f)/p)

Less Time for the parallel part p

Gustafson's Law Derivation

Gustafson's Law T -sequential time of original work
T, -sequential time with work*p
p=4 f - sequential fraction
= ?

T, =

—> .
Tp - parallel time on p processors
T =7

p
Sp - speedup
More work in the same Time Sp = Tl/Tp

S =7
p

Gustafson's Law Derivation

Gustafson's Law T -sequential time of original work
_ T, -sequential time with work*p
p=4 f - sequential fraction
T, =Tf + T(1-f)p
T - . |
Tp - parallel time on p processors
T =7
p
~ Sp - speedup
More work in the same Time Sp = Tl/Tp

?

n
!

Gustafson's Law Derivation

Gustafson's Law

Ip4I

More work in the same Time

T -sequential time of original work
T, -sequential time with work*p
f -sequential fraction

T, = Tf + T(1-f)p

Tp - parallel time on p processors
T =Tf + T(1-f)p/p =T

S -speedup
S = Tl/Tp
S =72

Gustafson's Law Derivation

Gustafson's Law T -sequential time of original work
T, -sequential time with work*p
p=4 f - sequential fraction
I IIII T, =Tf + T(1-f)p
>

Tp - parallel time on p processors
Tp =Tf + T(1-f)p/p =T
Sp - speedup

More work in the same Time Sp = Tl/Tp
S =Ff + (1-f)p

fib(4) task graph public class Fibonacci |

public static long fib(int n) {
if (n < 2) {
o return n;

}
® spawn task for fib(n-1);

® spawn task for fib(n-2);

fib(4) f >\ ® - for tasks to complete
/ \ return addition of task results
}

fib(3) /-’ oo - fib(2)

/

fib(2) T’ -

fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(4) task graph public class Fibonacci |

public static long fib(int n) {
if (n < 2) {
o return n;

}
® spawn task for fib(n-1);

fib(4 ® spawn task for fib(n-2);
ib(4) S N ® wait for tasks to complete
/ \ return addition of task results
}
fib(3) /-’ o - fib2)
/ What is a task?

(] o o

fib(2) | ¢~

ib(2) >? base case spawn wait

fib(1) fib(1) fib(0)

What is an edge?
fib(1) fib(0)

same procedure spawn wait

fib(4) task graph public class Fibonacci |

public static long fib(int n) {

if (n < 2) {

o return n;
}

® spawn task for fib(n-1);

® spawn task for fib(n-2);

® - for tasks to complete
return addition of task results

¥
fib2)
What is a task?
i (IS A7 T
S A=,, A fib(1) fib(1) fib(0) base case spawn wait
What is an edge?
fib(1)
. . —_—

critical path length is 8 tasks same procedure spawn wait

fib(4) simplified task graph

Simpler at the expense of not modelling
joins and inter-process dependencies

public class Fibonacci {
public static long fib(int n) {
if (n < 2) {
return n;

}
spawn task for fib(n-1);

spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

What is a task?

Call to Fibonacci

What is an edge?

S

spawn
(no dependency within same procedure)

Task Graphs

Critical path: path from start to end
that takes the longest (for some
metric)

Example: #nodes

Task Graphs

o Critical path: path from start to end
that takes the longest (for some
metric)

Example: #nodes

»
p

Task Graphs

Adding eight numbers:

1+24+3+4+5+6+7+8
——

+

|

NG 7

+

+
+
+

+

Task Graphs

Adding eight numbers: What is the corresponding task graph?

1+24+3+4+5+6+7+8
——

+

——
|

N -’

+

|
+
+

+

Task Graphs

Adding eight numbers: What is the corresponding task graph?
1+243+445+6+7+8 142
+
N—_—— +3
. + J/
R £) +4
N +v J/ +5
N + e g
Y +6

o +7

+8

Task Graphs

Adding eight numbers: What is the corresponding task graph?
1j2+3+4+5+6+7+8 142 A
N—_—— +3
(. + 7
R £) +4
\ Iv) o5 Critical path
+
N v _ ‘6 n-1
+ +7

+8 v

Task Graphs

Adding eight numbers:

1+2+34+4+5+6+7+8

Nt N Wit Ny

T + 7t +
;s X

\ >
-—

|

Task Graphs

Adding eight numbers: What is the corresponding task graph?

1+24+3+4+5+6+7+8

- 7 - >
B 3 N
- -
A 7
o

|

Task Graphs

Adding eight numbers: What is the corresponding task graph?

1+24+3+4+5+6+7+8
- - - -

- J/ A - /
Vv B 4
- -

A 7

¥

Task Graphs

Adding eight numbers: What is the corresponding task graph?
1+2+3+4+54+6+7+8 A
N~ N N N
+ - + + -
—_— —— Critical path
Y log(n)

Search And Count

Search an array of integers for a certain feature and count integers that
have this feature:

. Light workload: count number of non-zero values.

. Heavy workload: count how many integers are prime numbers.

We will study single threaded and multi-threaded implementation of
the problem.

Search And Count - Sequential

public class SearchAndCountSingle {
private int[] input;
private Workload.Type type;

private SearchAndCountSingle(int[] input, Workload.Type wt) {
this.input = input;
this.type = wt;

}

private int count() {
int count = 9;
for (int i = 9; 1 < input.length; i++) {

if (Workload.doWork(input[i], type)) count++;
}

return count;

Straightforward implementation.
Simply iterate through the input
array and count how many times
given event occurs.

Divide and Conquer

Basic structure of a divide-and-conquer algorithm:
1. If problem is small enough, solve it directly

2. Otherwise
a. Break problem into subproblems
b. Solve subproblems recursively
c. Assemble solutions of subproblems into overall solution

Divide and Conquer

+/+\+
/\+ +/\+
+ — T~ — T~ — T

— T~

N N4 V2 N2 N2 N2 A
O T S o S S 0 B i
IEEEEEENENENENENENENEEENRERERERERERERERERENENENN

Divide and Conquer

+/+\+
/\+ +/\+
+ — T~ — T~ — T

— T~

N N4 V2 N2 N2 N2 A
O T S I S S T 0 B 0
_

base case
no further split

Divide and Conquer

Tasks at different
levels of granularity

+ +\+
/\+ +/\+
"'\ — T~ — T~ — T

NI VAN VA NN VAN A A AN
o T S T T 0 B i

What determines a task?
i) input array ii) start index iii) length/end index
These are fields we want to store in the task

Feedback: Tasks A-D

ExecutorService

TPSO01-J. Do not execute interdependent tasks in a bounded thread pool

Created by Dhruv Mohindra, last modified by Carol J. Lallier on Jun 22, 2015
Bounded thread pools allow the programmer to specify an upper limit on the number of threads that can concurrently execute in a thread pool. Programs must not use threads from a bounded thread pool to execute
tasks that depend on the completion of other tasks in the pool.

A form of deadlock called thread-starvation deadlock arises when all the threads executing in the pool are blocked on tasks that are waiting on an internal queue for an available thread in which to execute. Thread-
starvation deadlock occurs when currently executing tasks submit other tasks to a thread pool and wait for them to complete and the thread pool lacks the capacity to accommodate all the tasks at once.

This problem can be confusing because the program can function correctly when fewer threads are needed. The issue can be mitigated, in some cases, by choosing a larger pool size. However, determining a suitable
size may be difficult or even impossible.

Similarly, threads in a thread pool may fail to be recycled when two executing tasks each require the other to complete before they can terminate. A blocking operation within a subtask can also lead to unbounded queue
growth [Goetz 2006].

Divide and Conquer Parallelization

thread 1

thread 2 4%4_%

thread 3 /+ \ / + \
thread 4 N T TN N
thread 5 ‘§+§‘ A RN N2

thread 6 / \ / \ / N\ / \ / \
T G O AT T S I S g A
thread 8 ERENEEERENRREREENRRRRRENRRERENRRERENRRERERNNREE

Divide and Conquer Parallelization

Performance optimization

Same thread is reused instead
thread 1

f ti
:E:EZS 2 v ereene nEW\C),niA?J,%Jr
thread 4 ‘% \\‘ ‘7 %
thread 5 ‘é*’Q‘ RN NN A//+Q‘

thread 6 + + /N /N N AN AN
T G O AT T S I S g A
thread 8 ERENEEERENRREREENRRRRRENRRERENRRERENRRERERNNREE

Divide and Conquer Parallelization

thread 1
thread 2
thread 3
thread 4
thread 5
thread 6
thread 7
thread 8

Performance optimization
Same thread is reused instead

of creating a new one/ , \
e

y N s
SN =

NN N2 VA NN AN

O T S o S S 0 B i

NEENNRERREREERRERENRENRERRERREREERERRERRERREEEND

Task B:

Extend your implementation such that it creates only a fixed number of threads. Make
sure that your solution is properly synchronized when checking whether to create a new

thread

How to achieve this?

Divide and Conquer Parallelization

—
N N
T TN ot e

Option 1:
Shared counter with
synchronized/atomic access

Divide and Conquer Parallelization

—
N N
T TN ot e

Option 1:
Shared counter with
synchronized/atomic access

Divide and Conquer Parallelization

0
1 /+\ 2
3 / +\ 4 5 / +\6
ot I I T
N N N2 2 N2 N2 AN
O T S o S S 0 B i
EENNNNANNNANARNRENERNNNNNNNANNiNNARNRR NN NNNNAEE

Option 1: Option 2:
Shared counter with Assign unique sequential id to each
synchronized/atomic access task. Spawn threads for first N tasks.

Divide and Conquer Parallelization

. / \
2n+1 2n+2
1 /+\ 2
3/+\ 4 5 /+\ 6
— \ / \ / ~
ré\ ré\ ré\\ SN/ N N N
o T mm eV T T e eV T
NEENNRERREREERRERENRENRERRERREREERERRERRERREEEND
Option 1: Option 2:
Shared counter with Assign unique sequential id to each

synchronized/atomic access task. Spawn threads for first N tasks.

Divide and Conquer Parallelization

2n+1 2n+2
1 /+\ 2
3/+\ 4 5 /+\ 6
— \ / \ / \
,-L\ ,-L\ ,-L\\ SN/ N N N
A As A A A A A Ay Ay
NEENNRERREREERRERENRENRERRERREREERERRERRERREEEND
Option 1: Option 2:
Shared counter with Assign unique sequential id to each
synchronized/atomic access task. Spawn threads for first N tasks.

+ no synchronization required
- imbalanced amount of work

Divide and Conquer vs Fork/Join

Divide And Conquer

Fundamental design pattern based on recursively breaking
down a problem into smaller problems that can be combined to
give a solution to the original problem

Fork/Join
A framework that supports Divide and Conquer style parallelism

Divide and Conquer vs Fork/Join

Divide And Conquer L —

thread 1 A%J’\ /+\
N N I I

AN A A AN AN AN A N
O T S I S B S 0 B 0
IEEEEEENENENENENENENEEENRERERERERERERERERENENENN

recursively breaking down a problem into smaller problems
problems are solved sequentially

Divide and Conquer vs Fork/Join

thread 1
thread 2

Fork/Join
thread 3 —
thread 4 /+ \/ %4_ \
thread 5 SN ‘7 ™~
thread 6 ‘;*QA RSN VNN A//+Q‘

thread 7 AN N N2 A 2 ANV
- O T S o S S 0 B i
IEEEEEENENENENENENENEEENRERERERERERERERERENENENN

a framework that supports Divide and Conquer style parallelism
problems are solved in parallel

Divide and Conquer vs Fork/Join

thread 1 Performance optimization
thread 2 Same thread is reused instead

thread 3 of creating a n&ne ¢+% Fork/Join
thread 4 /+ \ + \

thread 5 S N ‘7 ™~

thread 6 ‘;*QA RSN VNN A//+§‘

+ + + + + +

thread 7 * /NN N NN
- O T S o S S 0 B i
IEEEEEENENENENENENENEEENRERERERERERERERERENENENN

AN

a framework that supports Divide and Conquer style parallelism
problems are solved in parallel

Search And Count - Task Parallel

Define the task structure:

public class SearchAndCountMultiple extends RecursiveTask<Integer> {

private int[] input;

private int start;

private int length;

private int cutOff;

private Workload.Type workloadType;

Search And Count

protected Integer compute() {

Recall the template
) for divide and conquer
task parallelism

Search And Count

protected Integer compute() {
if () {

else Recall the template
) for divide and conquer
task parallelism

Search And Count

protected Integer compute() {
if () {

else Recall the template
for divide and conquer
task parallelism

Let fill in the template
for the search and
} count task

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() {] Workload

if (// work is small) { if (/) work is small) { } private Workload.Type type;
// do the work directly // do the work directly

else { else {
// split work into pieces // split work 1into pieces
// invoke the pieces and // invoke the pieces and

wailt for the results wailt for the results

// combine the results // combine the results

} }

Search And Count

protected Integer compute() {
if (// work is small)

// do the work directly

else {
// split work into pieces

// invoke the pieces and
wailt for the results

// combine the results

protected Integer compute() {

if (length <= cutOff) {

// do the work directly

else {
// split work 1into pieces

// invoke the pieces and
wailt for the results

// combine the results

private
private
private
private
private

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {

int[] input;

int start;

int length;

int cutOoff;
Workload.Type type;

Search And Count

protected Integer compute() {
if (// work is small)

// do the work directly

else {
// split work into pieces

// invoke the pieces and
wailt for the results

// combine the results

protected Integer compute() {
if (length <= cutOff) {

private
private
private
private
private

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {

int[] input;

int start;

int length;

int cutOoff;
Workload.Type type;

// do the work directly

else {
// split work 1into pieces

// invoke the pieces and
wailt for the results

// combine the results

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0;
for (int i = start; i < start + length; i++) {

J

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces // split work into pieces Same as Sequential

implementation

// invoke the pieces and // invoke the pieces and
wailt for the results wailt for the results
// combine the results // combine the results
} }

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() {]
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 09; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces // split work 1into pieces
// invoke the pieces and // invoke the pieces and
wailt for the results wailt for the results
// combine the results // combine the results
} }

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;

Sea rCh And Count private int start;

protected Integer compute() {
if (// work is small)

// do the work directly

else {
// split work into pieces

// invoke the pieces and
wailt for the results

// combine the results

private int length;
private int cutOff;

protected Integer compute() { .
private Workload.Type type;

if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {
if (Workload.doWork(input[i], type)) count++;
}
return count;
else {

int half = (length) / 2;
SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff,

type);

// invoke the pieces and
wailt for the results

// combine the results

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces int half = (length) / 2;

SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

// invoke the pieces and // invoke the pieces and
wailt for the results wailt for the results
// combine the results // combine the results
} }

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces int half = (length) / 2;

SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

// invoke the pieces and scl.fork();
wait for the results int count2 = sc2.compute();
int countl = scl.join();

// combine the results // combine the results

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces int half = (length) / 2;

SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

// invoke the pieces and scl.fork();
wait for the results int count2 = sc2.compute();
int countl = scl.join();

// combine the results // combine the results

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces int half = (length) / 2;

SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

// invoke the pieces and scl.fork();
wait for the results int count2 = sc2.compute();
int countl = scl.join();

// combine the results return countl + count2;

public class SearchAndCountMultiple
extends RecursiveTask<Integer> {
private int[] input;
Search And Count
private int length;
private int cutOff;

protected Integer compute() { protected Integer compute() { .
private Workload.Type type;

if (// work is small) if (length <= cutOff) {
int count = 0; }
for (int i = start; i < start + length; i++) {

// do the work directly if (Workload.doWork(input[i], type)) count++;
}
return count;
else { else {
// split work into pieces int half = (length) / 2;

SearchAndCountMultiple scl =

new SearchAndCountMultiple(input, start, half, cutOff, type);
SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

// invoke the pieces and scl.fork();
wait for the results int count2 = sc2.compute();

int countl = scl.join();

// combine the results return countl + count2;

Exercise 6

Assignment 6

Task Parallelism:
. Merge Sort

. Longest Sequence

Merge sort algorithm

In this exercise you will implement the merge sort algorithm using task
parallelism.

The merge sort algorithm partitions the array into smaller arrays, sorts
each one separately and then merges the sorted arrays.

* By default, the partitioning of the array continues recursively until the array size
is 1 or 2, which then is sorted trivially.

* Try larger cutoff values (e.g partition arrays down to minimum size 4 instead of
2) and see how this affects the algorithm performance.

* Discuss the asymptotic running time of the algorithm and the obtained speedup.

Longest Sequence

Given a sequence of numbers:
[1,9,4,3,3,8,7,7,7,0]

find the longest sequence of the same consecutive number

Longest Sequence

Given a sequence of numbers:

[1,9,4,3,3,8)7,7,7,0]

find the longest sequence of the same consecutive number

Longest Sequence

Given a sequence of numbers:

[1,9,4,3,3,8)7,7,7,0]

find the longest sequence of the same consecutive number.

If multiple sequences have the same length, return the first one (the one

with lowest starting index)
[0,]1,2,3,4,5,6,7,8,9] [1,1,{0, O]

Longest Sequence

Task:
Implement task parallel version that finds the longest sequence of the same

consecutive number.

Challenge:
The input array cannot be divided arbitrarily. For example:

[1,2,3,3,4,1]

[1, 2, 3] (3,4, 1]

Longest Sequence

Task:
Implement task parallel version that finds the longest sequence of the same

consecutive number.

Challenge:
The input array cannot be divided arbitrarily. For example:

[1,243,3)]4, 1]

Combining results of subtasks does / s

[1,]2, 3] [3]4, 1]

not give the correct answer!

