Parallel Programming
Exercise Session 8

Week 8

Feedback: Exercise 7

Feedback for Assignment 7

* What is wrong with the following code snippet?

public synchronized boolean transferMoney(Account from, Account to, int amount) {

return true;

Feedback for Assignment 7

* What we should have done for avoiding deadlocks

public class Account ... {

private final Lock lock = new ReentrantLock();

Feedback for Assignment 7

* What we should have done for avoiding deadlocks

public class BankingSystem {

public boolean transferMoney(Account from, Account to, aint amount) {
Account first, second;
// Introduce lock ordering:
if (to.getld() > from.getld()) {
first = from; second = to;
} else {
first = to; second = from;

}

Feedback for Assignment 7

* Acquire locks, use finally to always release the locks
public class BankingSystem {

public boolean transferMoney(Account from, Account to, int amount) {

first.getLock().lock();

second.getLock().lock();

try {

} finally {
first.getLock().unlock();
second.getLock().unlock();

Feedback for Assignment 7

* Summing up: How to do it safe

Lock each account before reading out its balance, but don’t release the lock until all
accounts are summed up.
- Two-phase locking

In the first phase locks will be acquired without releasing,
in the second phase locks will be released.

-> Deadlocks still a problem

-> Ordered locking required

Lecture Recap

Lecture recap: State Space Diagram

* When dealing with mutual exclusion problems, we should focus on:
* the structure of the underlying state space, and
* the state transitions that occur

* Remember the state diagram captures the entire state space and all
possible computations (execution paths a program may take)

* A good solution will have a state space with no bad states

Lecture recap: State Space Diagram

turn = 1;
Process P Process Q
do do
pl: Non-critical section P gl: Non-critical section Q
p2: whileturn!=1 g2: whileturn!=2
p3: Critical section g3: Critical section
p4: turn=2 g4: turn=1

| pl,ql,1 }—

G);,ql,l)

b

(= \e

:

r

3.q1,1 }

Y

()

'

1

p4,q1,1

[

)

Y

(o \e

P
-

pl,g2,1

2,92,1

3.92,1

RIS

p4,92,1

i

v
j p2,q2.2)

i

p2,91,2

pl,qg2,2

ﬁ_.

p2,93,2

pl,q4,2

Al

g

p2,q4,2

Non-critical section P

while turn 1= 1
Critical section
turn = 2

Non-critical section Q
while turn !'= 2
Critical section

turn =1

Correctness of Mutual exclusion

* “Statements from the critical sections of two or more processes must
not be interleaved.”

* We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

* Mutual exclusion holds!

12

Freedom from deadlock

* “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

* Pistrying to enter its CS when the control pointer is at p2
(awaiting turn to have the value 1. p2: turn==1)

* Qistrying to enter its CS when the control pointer is at g2
(g2: turn==2)

13

Freedom from deadlock

* Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

* Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

i.e. the control pointer can always move to point to p3

14

Freedom from deadlock

Typically, a deadlocked state has no transitions leading fromit, i.e. no
statement is able to be executed.

Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. The program is still deadlocked but this situation is
sometimes termed ‘livelock’. Every one is ‘busy doing nothing’.

15

p‘2,q1 B (pl,q3,2>

Y
i

] Y
ipZ,qZ,Z) Q:)l,q4,2)

There is always a path for P to execute p2 (turn == 1)

Freedom from individual starvation

* “If any process tries to enter its critical section then that process
must eventually succeed.”

* If a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

* Possible starvation reveals itself as cycles in the state diagram.
* Because the definition of the critical section problem allows for a

process to not make progress from its Non-critical section, starvation
is, in general, possible in this example

17

Y

pl,ql,1

p1,92,1

}

2,qg2,1

Y
Gz q1,1)

aL,1)

Y

2\

p3.aL1)
()

3

3,92,1

=,

1

A

4,q2,1

~ P
o

Sy Iy

If a process does not make progress
from its Non-critical section, starvation
is possible in this example

Atomic operations

An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

It either happens completely, or it doesn’t happen at all.

No side effects of an atomic action are visible until the action is complete

19

Hardware support for atomic operations
* Test-And-Set (TAS)

* Compare-And-Swap (CAS)

* Load Linked / Store Conditional

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

20

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Hardware Semantics

boolean TAS(memref s)

If (mem|[s] ==0) {

memJs] = 1;
return true;
} else

return false;

int CAS (memref a, int old, int new)
oldval = mem|a];
iIf (old == oldval)
mem[a] = new;

return oldval;

21

atomically set to value iff
current value is . Return
true on success.

sets and returns
previous value.

22

Assignment 8: Overview

* Analyzing locks

* Atomic operations

23

Analyzing locks

* The sample code represents the behavior of a couple that are having
dinner together, but they only have a single spoon.

* Prove or disprove that the current implementation provides mutual
exclusion.
* HINT: Use State space diagram

24

Atomic operations

* In this task, we will see and analyze:
* the usage of atomic operations to perform concurrency control, and
* the cost of using them when having data contention

* For more details, please refer to the assignment sheet

25

Exercise 8

Assignment 8: Overview

- Analyzing locks

- Atomic operations

Analyzing Locks

- The sample code represents the behavior of a couple that is
having dinner together, but they only have a single spoon.

- Prove or disprove that the current implementation provides
mutual exclusion
Hint: Use state space diagram

Atomic Operations

- In this task, we will see and analyze

* The usage of atomic operations to perform concurrency control, and
* The cost of using them when having data contention

- Details: See exercise sheet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

