ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Parallel Programming
Assignment 12: Consensus
Spring Semester 2020

Assigned on: 11.05.2020 Due by: 18.05.2020

Overview

Distributed consensus is a fundamental problem in computer science. It is defined as follows: There are
N agents, each agent provides an input, i.e., an integer number. At the end of the consensus protocol, all
agents need to agree on a single value out of the inputs provided by any agent. Some of the agents may
fail or progress arbitrarily slow, yet we still require the protocol to terminate in a finite number of steps
(wait-free consensus).

Exercise 1 — Wait-free implies lock free

Explain why a valid wait-free consensus protocol cannot use locks.

Answer: In a wait-free algorithm, any thread needs to be able to make progress independently of other
threads. An algorithm is wait-free if every operation has a bound on the number of steps the algorithm
will take before the operation completes. Thus, we cannot use locks to implement a wait free algorithm
(assuming locks are used to protect shared resources), as Thread A might obtain the lock, then become
really slow. During this period all other threads that want to obtain the lock are blocked and cannot make
any progress.

Execise 2 — Valence states

Assume N=2 and inputs are either O or 1 for each agent. Thus in the initial state of any consensus protocol
we are in a bivalent state (bivalent = the output can be 0 or 1). However, at termination all agents have
agreed on a single value, thus we are in a univalent state. Explain why there is a finite number of bivalent
states in any wait-free consensus protocol.

Answer: Wait-freedom implies that the protocol finishes in a finite number of steps. Thus there can only
be a finite number of states and no cycles.

Exercise 3 — Consensus among prisoners

Imagine there are 100 people in a prison. Each day the warden picks a prisoner (each prisoner with the
probability 1/100). The prisoner is led to a room with a light that he can turn on or off. Initially the light is
turned off. After the prisoner was in the room he can state ’by now every prisoner was in the room at least

once”. If this statement is made and it is true, all prisoners are released. If the statement is made and it is
false, all prisoners are shot. Devise a strategy that the prisoners can follow to make sure they get released
some day in the future with absolute certainty (no other communication is allowed).

Answer: The first prisoner selected is in charge of turning the light on whenever it is found off. Each other
prisoner is to turn the light off the very first time they find it on, otherwise they are to leave it in the state
they found it. When the first prisoner selected turns the light on for the 100th time, they can safely assume
that all prisoners have been in the interrogation room.

1 Exercise 4 — Implementing two thread consensus

Assume you have a machine with atomic registers and an atomic test-and-set operation with the following
semantics (X is initialized to 1):

int TAS() {

res = X;
if (res = 1) {
X =0

return (res)

Implement a two-process consensus protocol using TAS() and atomic registers.
Answer:

// use two atomic registers, one to store the value we propose, one holds
// the value the other thread proposed. For simplicity we access them like
// an array

int propose(int p) {
// assume each thread has an id (thread_id) which is either zero or one
R[thread_id] = p;
val = TAS()
if (val == 1) return p;
else return R[(thread_id + 1) % 2];

Explanation: TAS returns one exactly once, to the first thread that calls it.
This thread is the "winner" and returns its own value, however, before a thread
calls TAS he stores its proposed value in a shared atomic register so the

other thread (once he knows he lost) can access and return it. The algorithm

is wait free since it does not contain loops or blocking operations.

Exercise 5 — Linearizability

Which of the following scenarios are lineraly consistent, assuming s is a stack? Either mark the point of
linearization or explain why it is not linearly consistent.

a) A : s.push(1l)
B : s.push(2)
A : s.pop()
B : s.pop()
A : void
B : void
A : 2
B :1
Answer: This is not a valid history. A and B did not finish the push operations before they start
popO).

b) s.push (1)

s.push(2)
void

A

B

A

B : void
A s.pop ()
A 2

B s.pop ()
B 1

Answer: Yes the linearization point of A : push(1) is before that of B : push(2)

c) s.push (1)
s.push(2)
void
void
s.pop ()

1

s.pop ()

2

o= I vv B v I v e R — i o v e

Answer: Yes the linearization point of A : push(1) is after that of B : push(2)

	Exercise 4 – Implementing two thread consensus

