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Dining Philosophers

a) There is a possibility to deadlock: In the first step, each philosopher acquires the fork on their left
side at the same time. Now that every philosopher has one fork in their left hand, they will try to pick
up the fork on their right side, but this fork is already held by their neighbor. In this state, everyone
waits for their neighbor on the right to release the fork, but since nobody has acquired both forks to
eat, this will never happen and the philosophers will starve.

The problem is that there is a cyclic dependency in the case described above: P1 waits for P5, P5
waits for P4, P4 waits for P3, P3 waits for P2, and P2 waits for P1.

b) The correct solution is to break the cyclic dependency. This means that one philosopher, e.g. philoso-
pher P5 has to pick up the forks in a different order. This could be achieved by introducing a order
between the forks, and all the philosophers have to pick up the fork with the lower order first. This
resolves the deadlock, because there are no cyclic dependencies any more.

Note that introducing a timeout will not solve the problem: Even if the philosophers would release
the fork after some time of waiting, it could still happen that they would do this at the same time.
This would be a livelock, where all philosophers would constantly acquire and release the fork on
their left, but nobody would get to eat.

c) As there are only five forks and every philosopher needs two forks to eat, the maximum amount of
philosophers eating concurrently is two, however there is a possibility that only one philosopher is
eating. Consider P2, P3, P4 each acquiring the fork on their left und P1 acquires both forks. Nobody
else, except P1 can now eat.

All solutions to fix that problem require the philosophers to communicate in some way, i.e., intro-
ducing a single lock for a pair of forks, or forming a queue of waiting philosophers and a central
arbiter (”waiter”) which selects which philosopher can eat next.



Better than Dijkstra

This is the proposed lock:

C0: b(i) := false;
C1: if k != i then begin
C2: if !b(j) then go to C2;

else k := i; go to C1; end;
else CS;
b(i) := true

Let us first rewrite this in some more Java-like pseudocode, first we add some indention.

C0: b(i) := false;
C1: if k != i then

begin
C2: if !b(j) then go to C2;

else k := i; go to C1;
end;
else CS;
b(i) := true

Now we translate go to statements into while loops and renumber the statements.

S1: b(i) := false;
S2: while (k != i) {
S3: while (!b(j)) {};
S4: k := i;

}
S5: // CS
S6: b(i) := true

Note that not all variables are initialized properly. Let us assume k=0 and b=[true,true].

We have two ways to solve this problem. The lazy and smart one is to assume both threads are in the
critical section, then proof that this can or cannot happen by “tracing back“ from there.

Another option is to draw the full state-space diagram. This is a lot of work, the upper bound on the number
of states we need to consider is exponential in the number of bits of storage and threads, in this case we
could have up to 62 ∗ 23 states to examine. Note that there are tools to facilitate this approach1.

Let’s do the first approach. We assume both treads P0 and P1 are in the critical section (mutual exclusion is
violated). Lets also assume P0 enters first (they both execute the same code, so this assumption is without
loss of generality). Lets name our threads P0 and P1. For P0 i = 0 and j = 1, for P1 i = 1 and j = 0.

So we can write the actions of P0 that lead to P0 to be in the CS like this:

WP0
(b[0] = false)→ RP0

(k = 0)→ CSP0

Now following our assumption that P1 enters the CS second, we assume it goes once through the while
loop before entering the CS:

WP1
(b[1] = false)→ RP1

(k = 0)→ RP1
(b[0] = 1)→WP1

(k = 1)→ RP1
(k = 1)→ CRP1

1see for example the spin model checker, available at http://spinroot.com/
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Now we can check if we can find a valid interleaving for both of those traces, i.e., an arrangement such that
all “happens before“ arrows are pointing from left to rigt and all reads return the value last written to the
respective variable:

WP1(b[1] = false)→ RP1(k = 0)→ RP1(b[0] = true)→WP0(b[0] = false)→
RP0(k = 0)→ CSP0 →WP1(k = 1)→ RP1(k = 1)→ CRP1

This counterexample shows that the lock does not provide mutual exclusion.
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Transitive Closure

If a relation R contains (a, b) and (b, c) then the transitive closure is the smallest relation that contains
(a, c). If we apply this to our example, the transitive closure gives us the relation “reachable” (directly or
indirectly).

From / To Aachen Bern Chemnitz Dresden Erfurt Frankfurt St. Gallen Hamburg
Aachen X X X X X
Bern X X X X X
Chemnitz X X X X X
Dresden X X X X X
Erfurt X
Frankfurt X
St. Gallen X X X X X
Hamburg X X X X X X
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Program Order

Let us first define a relation “is executed before“:

S1, S2
S2, S3
S3, S4
S3, S5

Program order is now the transitive closure of those operations.

S1, S2
S2, S3
S1, S3
S3, S4
S1, S4
S2, S4
S3, S5
S1, S5
S2, S5

Synchronization Actions

Reading and writing of volatile variables is a synchronization action, same as locking or unlocking, and
starting or stopping a thread, or any action that checks if a thread has terminated. Nothing else.
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