Introduction & Course Overview

SS 2020- Parallel Programming
Dr. Malte Schwerhoff, Dr. Hermann Lehner

Slides (mainly) from Prof. Martin Vechev, Prof. Otmar Hilliges, Dr. Felix Friedrich

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

About this course

Lecturers:

Dr. Malte Schwerhoff

Dr. Hermann Lehner

UNG F 15/16
{firstname.lastname}@inf.ethz.ch

Teach Part |
Office hours: per email request

Prof. Torsten Hoefler
CAB F 75
torsten.hoefler@inf.ethz.ch

Teaches Part I
Office hours: per email request

https://spcl.inf.ethz.ch/Teaching/2020-pp/

About us

* Dipl. Informatik-Ingenieur at ETH

* PhD at ETH: Program semantics, formal
verification

* PhD at ETH: Language & tools for
verifying parallel programs G * 5 years in industry as software engineer and
team lead

* Semesters abroad in Tomsk (Russia),

Leuven (Belgium)

* ETH lecturer since 2016

e ETH lecturer since 2017

Why this course?

10,000,000

‘ DuaI-CoreItaniu2 -/
™ B

1. Parallel programming is a necessity "™ IntellcPU Trends
— since ZOOO-ISh (sources: Intel, Wikipedia, K. Olukotun) ="
/_/
2. Adifferent way of computational
thinking — who said everything
needs a total order?

100

3. Generally fun (since always) — if you
like to challenge your brain .

1 ' | | | Transistors (000)

@ Clock Speed (MHz)
Y] A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Herb Sutter for Dr. Dobb’s Journal 4

Course Overview

Parallel Programming (252-0029-00L)
e 4L+ 2U
e 7 ECTS Credits

* Audience: Computer Science Bachelor
e Part of Basisprifung

e Lecture Language: Denglisch

Course Coordination

Communication via course website:
https://spcl.inf.ethz.ch/Teaching/2020-pp/

* Lectures 2 x week:
* Tuesday 10-12 HG F 7 (video transmission HG F 5)
* Wednesday 13-15 HG F 7 (video transmission HG F 5)

* Weekly Exercise Sessions

* Enroll via myStudies
* Wednesday 15-17 or Friday 10-12

About this Course

Head TAs: Grades:
* Pavol Bielik (first part) e Class is part of Basispriifung: written, centralized
 Timo Schneider (second part) exam after the term
Teaching Assistants: e 100% of grade determined by final exam
e Yishai Oltchik * Victor Cornillere ° Exercises not graded but essential
* Salvatore Di Girolamo e Marcin Copik
e Andrei lvanov * Neville Walo
* Grzegorz Kwasniewski * Felix Stoger
* Johannes de Fine Licht e Lasse Meinen
* Nikoli Dryden * Robin Renggli
e Alexandros Ziogas * Soel Micheletti
* Marc Ficher e Patrick Wicki
* Velko Vechev * Andreas Bergmeister

* Enis Ulginaku

Academic Integrity

e Zero tolerance cheating policy (cheat = fail + being reported)

e Homework
 Don’t look at other students code
 Don’t copy code from anywhere
* Ok to discuss things — but then you have to do it alone

* Code may be checked with tools ed
xo™°
 Don’t copy-paste ‘ \N\‘“ao
° Code “ec\k‘\\\s
 Text «\'\%‘(\"c
\e

* Images

Course QOverview

How does this course fit into the CS curriculum?

¢ Programming-in-the-sma” => Data Structures and Algorithms
g

Program = Algorithms + Data Structures
* Programming-in-the-large

System = Processes + Objects + Communication

1] T

This class This class

Intro to Programming

How does this course fit into the CS curriculum?

Algorithm Algorithm Algorithm Algorithm

Data structure Data structure

Process / Program Process / Program

Operating System

11

Learning Objectives

By the end of the course you should

1. have mastered

2. know how to using different parallel
programming paradigms (e.g., task parallelism, data parallelism) and
mechanisms (e.g., threads, tasks, locks, communication channels).

3. be qualified to and of parallel
algorithms
4. be ready to for

(e.g. searching large data sets)

Requirements

Basic understanding of Computer Science concepts

Basic knowledge of programming concepts:
We will do a quick review of Java and briefly discuss JVMs

Basic understanding of computer architectures:
No detailed knowledge necessary (we will cover some)

P

Congratulations,\
it on!:, took You |}

28

1

—1]
IIMYQ/éeU

sy jolyon.co.uk

l(S e,ym'&ﬂ M Yy

14
Image source: http://jolyon.co.uk

15

l

1

O

-
e & OO
! C@vncarwmcy

Motivation — Why Parallelism?

°
® []
®e
[]
. % | o
£ 1 o
3 o op
5 o .
X eele
2 'y 799
2 L
5 83
- sone
™
0.1 s
seee
o o
®
[]
1960 1975 1990 2005 2020

Year

Moore’s Law Recap: Transistor counts double every two years

= Means: Smaller transistors => can put more on chip => computational power grows exponentially => your
sequential program automatically gets faster.

= Also applies to RAM size and pixel densities

16

Motivation — Whv Parallelism?

Clock Frequency

(\1 nooo

B AMD

B Cypress
B DEC
B Fuijitsu
B Hitachi
MW HP

B B

B Intel

B Votorola
B vPs
N sal

B sun

B Cyrix

. B HAL

\ B MexGen

1000

—

100

Clock Fregquency (MHz)

o | e 1227
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

——————
\>

Year

17

Why don’t we keep increasing clock speeds?

Transistors have not stopped getting smaller + faster (Moore lives)

Heat and power have become the primary concern in modern
computer architecture!

Consequence:
 Smaller, more efficient Processors
 More processors — often in one package

What kind of processors do we build then?

Main design constraint today is power

sSingle-Core CPUs:
= Complex Control Hardware
. Flexibility + Performance!
m Expensive in terms of power (Ops / Watt)

*Many-Core/GPUs etc:
= Simpler Control Hardware
E Potentially more power efficient (Ops / Watt)

: More restrictive / complex programming models [but useful in
many domains, e.g. deep learning].

Class Overview

(Parallel) Programming Parallelism Concurrency Parallel Algorithms

Shared data e Useful & common
Race Conditions algorithms in
Locks, parallel
Semaphores, etc. Data structures for

Lock-free parallelism

* Recap: Understanding
Programming in and detecting
Java + a bit of JIVM parallelism

* Parallelism in Java Intro to PC
(Threads) Architectures

programming Sorting &

Communication Searching, etc.

across tasks and

processes

Formalizing
parallelism
Programming
models for
parallelism

20

1. MUTUAL EXCLUSION

Alice’s Cat vs. Bob’s Dog

A A
&).

Requirement I: Mutual Exclusion !

A]

Requirement |I: No Lockout when free

A

A
Y

X

Communication: Idea 1 [Alternate]

Dog is
allowed
in yard

dog cat

&

Access Protocol [Alternate]

Now cat is
allowed in

yard
dog cat

t—

ol

Problem: starvation!

cat

28

Communication: Idea 2[Notification]

O

A

My pet isin
the yard

Access Protocol 2.1: Idea

Cat wants to
get out

30

Another Scenario

Cat wants to
get out

Dog wants
to get out

33

Problem: no Mutual Exclusion!

» v

Checking flags twice does not help: deadlock!

Access Protocol 2.2

Cat wants to
get out

38

Dog wants
to get out

42

Access Protocol 2.2 is provably correct

A

e

AP-

Minor (?) Problems: Livelock, Starvation

OB

Final Solution

dog goes
first

dog

cat

&

a7

Final Solution

dog cat

Cat wants to

get out Dog wants

to get out

48

Final Solution

dog cat

Final Solution

Final Solution

Final Solution

Next
time cat
goes first

dog cat

t——

o

52

Still: General Problem of Waiting ...

2. PRODUCER-CONSUMER

Producer-Consumer

Producer-Consumer

56

Rules

57

58

OO O

Communication

OO O

ﬁ emors ﬁ
empty
<

... = %

Protocol

not any
more

62

OO O

Empty
again r

h

3. READERS-WRITERS

PET
A

LOVES

SR—]

OO O

PET
LOVES

OO O

PET
LOVES

HATE

SR—]

OO O

PET
LOVES

The bad news

= Reality of parallel computing is much more complicated than this.

= The results of one action, such as the lifting of a flag by one thread, can
become visible by other threads delayed or even in different order,
making the aforementioned protocols even more tricky.

= Precise reasons will become clear much later in your studies. But we will
understand consequences in the lectures later.

The good news

" On parallel hardware we will find an interesting tool to deal with low
level concurrency issues.

= There is sufficient abstraction in the programming models of different
programming languages.

= Later on, we will not really have to deal with such low level concurrency
issues. But we should have understood them once.

Language Landscape

C, C++

Java

Python, Ruby, Perl
Scala, Clojure, Groovy
Erlang, Go, Rust
Haskell, OCaml

JavaScript

=
[—
@ Java ' JS

’scala O Clojure
Tvdocaml

@ python’ @

4 co

74

x

Why use Java?

OoRACLE

Status: Installing Java

Is ubiquitous (see oracle installer) |

* Many (very useful) libraries 3 Billion Devices Run Java

* Excellent online tutorials & books

Parallelism is well supported ORACLE"

* In the language and via frameworks

Interoperable with modern JVM languages
* E.g., Akka framework
Yet, not perfect

* Tends to be verbose, lots of boilerplate code

75

Concepts and Practice

Our goal is twofold:

* Learn how to write parallel programs in practice
= Using Java for the most part

= And showing how it works in C

* Understand the underlying fundamental concepts
= Generic concepts outlive specific tools

= There are other approaches than Java's

You are Encouraged to:

* Ask questions:

helps us keep a good pace

helps you understand the material

let's make the course interactive

class or via e-mail

* Use the web to find additional information
= Javadocs

= Stack Overflow

* Write Code & Experiment

77

What are Exercises for?

Learning tool
Seeing a correct solution is not enough

You should try to solve the problem yourselves

Hence, exercise sessions are
= for guiding you to solve the problem

" not for spoon-feeding you solutions

Introduction to Java Programming

Introduction to Java Programming, INTRODUCTION'TO
o J A2\
Daniel Liang. PR O/GRANM IN G

:JMF’REI-! -

ISBN-13: 9780133813463

Chapters 1-13 (with some
omissions)

Week 1-3

79

Java Concurrency in Practice

Java Concurrency in Practice, 2006. BRIAN GOETZ 4

Brian Goetz, Tim Peierls, Joshua e
Bloch, Joseph Bowbeer, David
Holmes, Doug Lea.

ISBN-13: 9780321349606

Week 4-9

80

Theory and beyond

Fundamental treatment of
concurrency

In particular the "Principles" part is
unique

Not easy

In this course

= Theory of concurrency
= Behind locks

= Lock-free programming

R darioidas MEsshox

THE ART
MULTIPROCESSOR
PROGRAMMING

=t [

81

