Introduction & Course Overview

SS 2020– Parallel Programming
Dr. Malte Schwerhoff, Dr. Hermann Lehner

Slides (mainly) from Prof. Martin Vechev, Prof. Otmar Hilliges, Dr. Felix Friedrich

About this course

Lecturers:

Dr. Malte Schwerhoff Dr. Hermann Lehner UNG F 15/16 {firstname.lastname}@inf.ethz.ch

Teach Part I
Office hours: per email request

Prof. Torsten Hoefler CAB F 75 torsten.hoefler@inf.ethz.ch

Teaches Part II
Office hours: per email request

https://spcl.inf.ethz.ch/Teaching/2020-pp/

About us

• BSc at FH Gelsenkirchen

• MSc at ETH

• PhD at ETH: Language & tools for verifying parallel programs

• Semesters abroad in Tomsk (Russia), Leuven (Belgium)

• ETH lecturer since 2017

- Dipl. Informatik-Ingenieur at ETH
- PhD at ETH: Program semantics, formal verification
- 5 years in industry as software engineer and team lead
- ETH lecturer since 2016

Why this course?

- Parallel programming is a necessity

 since 2000-ish
- 2. A different way of computational thinking who said everything needs a total order?
- 3. Generally fun (since always) if you like to challenge your brain

Course Overview

Parallel Programming (252-0029-00L)

- 4L + 2U
- 7 ECTS Credits
- Audience: Computer Science Bachelor
 - Part of Basisprüfung
- Lecture Language: Denglisch

Course Coordination

Communication via course website:

https://spcl.inf.ethz.ch/Teaching/2020-pp/

- Lectures 2 x week:
 - Tuesday 10-12 HG F 7 (video transmission HG F 5)
 - Wednesday 13-15 HG F 7 (video transmission HG F 5)
- Weekly Exercise Sessions
 - Enroll via myStudies
 - Wednesday 15-17 or Friday 10-12

About this Course

Head TAs:

- Pavol Bielik (first part)
- Timo Schneider (second part)

Teaching Assistants:

- Yishai Oltchik
- Salvatore Di Girolamo
- Andrei Ivanov
- Grzegorz Kwasniewski
- Johannes de Fine Licht
- Nikoli Dryden
- Alexandros Ziogas
- Marc Ficher
- Velko Vechev
- Enis Ulqinaku

- Victor Cornillere
- Marcin Copik
- Neville Walo
- Felix Stöger
- Lasse Meinen
- Robin Renggli
- Soel Micheletti
- Patrick Wicki
- Andreas Bergmeister

Grades:

- Class is part of Basisprüfung: written, centralized exam after the term
- 100% of grade determined by final exam
- Exercises not graded but essential

Academic Integrity

- Zero tolerance cheating policy (cheat = fail + being reported)
- Homework
 - Don't look at other students code
 - Don't copy code from anywhere
 - Ok to discuss things but then you have to do it alone
 - Code may be checked with tools
- Don't copy-paste
 - Code
 - Text
 - Images

Course Overview

aka why should you care?

How does this course fit into the CS curriculum?

• Programming-in-the-small => Data Structures and Algorithms

Programming-in-the-large

How does this course fit into the CS curriculum?

Learning Objectives

By the end of the course you should

- 1. have mastered fundamental concepts in parallelism
- 2. know how to construct parallel algorithms using different parallel programming paradigms (e.g., task parallelism, data parallelism) and mechanisms (e.g., threads, tasks, locks, communication channels).
- 3. be qualified to reason about correctness and performance of parallel algorithms
- 4. be ready to implement parallel programs for real-world application tasks (e.g. searching large data sets)

Requirements

Basic understanding of Computer Science concepts

Basic knowledge of programming concepts:

We will do a *quick* review of Java and briefly discuss JVMs

Basic understanding of computer architectures:

No detailed knowledge necessary (we will cover some)

Motivation – Why Parallelism?

Moore's Law Recap: Transistor counts double every two years

- Means: Smaller transistors => can put more on chip => computational power grows exponentially => your sequential program automatically gets faster.
- Also applies to RAM size and pixel densities

Motivation – Why Parallelism?

Why don't we keep increasing clock speeds?

Transistors have *not* stopped getting smaller + faster (Moore lives)

Heat and power have become the primary concern in modern computer architecture!

Consequence:

- Smaller, more efficient Processors
- More processors often in one package

What kind of processors do we build then?

Main design constraint today is power

Single-Core CPUs:

- Complex Control Hardware
- Pro: Flexibility + Performance!
- Con: Expensive in terms of power (Ops / Watt)

Many-Core/GPUs etc:

- Simpler Control Hardware
- Pro: Potentially more power efficient (Ops / Watt)
- Con: More restrictive / complex programming models [but useful in many domains, e.g. deep learning].

Class Overview

(Parallel) Programming

- Recap: Programming in Java + a bit of JVM
- Parallelism in Java (Threads)

Parallelism

- Understanding and detecting parallelism
- Intro to PC Architectures
- Formalizing parallelism
- Programming models for parallelism

Concurrency

- Shared data
- Race Conditions
- Locks, Semaphores, etc.
- Lock-free programming
- Communication across tasks and processes

Parallel Algorithms

- Useful & common algorithms in parallel
- Data structures for parallelism
- Sorting & Searching, etc.

Three stories

1. MUTUAL EXCLUSION

Alice's Cat vs. Bob's Dog

Requirement I: Mutual Exclusion!

Requirement II: No Lockout when free

Communication: Idea 1 [Alternate]

Problem: starvation!

Communication: Idea 2[Notification]

Access Protocol 2.1: Idea

Another Scenario

Problem: no Mutual Exclusion!

Checking flags twice does not help: deadlock!

Access Protocol 2.2

Access Protocol 2.2 is provably correct

Minor (?) Problems: Livelock, Starvation

Still: General Problem of Waiting ...

Three stories

2. PRODUCER-CONSUMER

Producer-Consumer

Producer-Consumer

Rules

Communication

Protocol

Three stories

3. READERS-WRITERS

The bad news

- Reality of parallel computing is much more complicated than this.
- The results of one action, such as the lifting of a flag by one thread, can become visible by other threads delayed or even in different order, making the aforementioned protocols even more tricky.
- Precise reasons will become clear much later in your studies. But we will understand consequences in the lectures later.

The good news

- On parallel hardware we will find an interesting tool to deal with low level concurrency issues.
- There is sufficient abstraction in the programming models of different programming languages.
- Later on, we will not really have to deal with such low level concurrency issues. But we should have understood them once.

Language Landscape

C, C++

Java

Python, Ruby, Perl

Scala, Clojure, Groovy

Erlang, Go, Rust

Haskell, OCaml

JavaScript

...

Clojure

Why use Java?

Is ubiquitous (see oracle installer)

- Many (very useful) libraries
- Excellent online tutorials & books
 Parallelism is well supported
- In the language and via frameworks
 Interoperable with modern JVM languages
- E.g., Akka framework

Yet, not perfect

Tends to be verbose, lots of boilerplate code

Concepts and Practice

Our goal is twofold:

- Learn how to write parallel programs in practice
 - Using Java for the most part
 - And showing how it works in C
- Understand the underlying fundamental concepts
 - Generic concepts outlive specific tools
 - There are other approaches than Java's

You are Encouraged to:

- Ask questions:
 - helps us keep a good pace
 - helps you understand the material
 - let's make the course interactive
 - class or via e-mail
 - Use the web to find additional information
 - Javadocs
 - Stack Overflow
 - Write Code & Experiment

What are Exercises for?

Learning tool

Seeing a correct solution is not enough

You should try to solve the problem yourselves

Hence, exercise sessions are

- for guiding you to solve the problem
- not for spoon-feeding you solutions

Introduction to Java Programming

- Introduction to Java Programming, 2014.
- Daniel Liang.
- ISBN-13: 9780133813463
- Chapters 1-13 (with some omissions)
- Week 1-3

Java Concurrency in Practice

- Java Concurrency in Practice, 2006.
- Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, Doug Lea.
- ISBN-13: 9780321349606

Week 4-9

Theory and beyond

- Fundamental treatment of concurrency
- In particular the "Principles" part is unique
- Not easy
- In this course
 - Theory of concurrency
 - Behind locks
 - Lock-free programming

