
Parallele Programmierung
Evolution of Concurrency Support in Java

Intro to Stream Processing (Demo)
Hermann Lehner



1996: Threads, Locks, Synchronized Blocks

• Java 1.0 Release

• Java threads are mapped to heavy weight OS threads

• Each object in Java can act as a reentrant lock

• “Critical Sections” with synchronized blocks

• Concurrency on the lowest level, comparable to assembler programming. 
Very difficult to get right. Completely manual control.

• Manual fork/join of threads compares to using ‘goto’ statements in 
imperative programming



2004: Concurrency Framework (Executors…)

• Java 5.0 Release

• On top of the existing low-level concurrency tools (threads, locks…)
• Executor service to conveniently run tasks concurrently (and potentially 

parallel)
• Explicit Lock classes (Reentrant Locks, Read-Write Locks, …)
• Toolkit of atomic operations (AtomicInteger, …)

• Much easier to write concurrent code

• System takes over the job of distributing work packages to available 
threads.

• Doesn’t allow Divide and Conquer Parallelism



2011: ForkJoin, More Data Structures

• Java 7 Release

• Finally, good support for Divide & Conquer Parallelism

• Decoupling from Java Threads. ForkJoin Tasks are very lightweight. 
Usage of available CPU is optimized by framework (after warm-up)

• ThreadLocalRandom allows to efficiently generate random numbers 
per thread (otherwise bottleneck)

• ForkJoin is still not easy to use, a lot of manual management of 
decomposition into tasks and collecting results



2014ff: Java Stream API, 

• Huge step towards parallelizing computation

• Take away the burden on manually managing the decomposition into 
tasks and collecting results.

• Functional style programming

• CompletableFuture (async programming)

• If it works and performs, fine. Otherwise: A lot of magic happens 
behind the scenes, very difficult to debug



Running Example: Sum of Elements in List

 IDE



Stream API Introduction

The Oracle Documentation provides a nice introduction to Streams! 

Also, modern IDES can automatically replace wordy train wrecks in 
elegant lambdas/functional style.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/uti
l/stream/package-summary.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/package-summary.html


Exploring the Java Stream API (+ Lambdas)

 IDE


