ETH:zurich T S o .:_'~-’ o ' spcl.inf.ethz.ch

y @spcl_eth

LORSIERIL CEREH Google’s dedicated TensorFlow
Parallel Programming, Spr. 2019, Lecture 14: processor, or TPU, crushes Intel, Nvidia

Data Races, Solvmg Mut.ual.Ex _. In inference workloads
r ; ' By Joel Hruska on April 6, 2017 at 9:48 am
with Atomic Registe,

2 2K Y
shares n u E E .
LY e d e w. . ’ S v
- —"5" ".f-,"' oS $ w;u = el b ‘1,‘. ¢ SEm. .
. J l{ i g Cllim, TYyey ﬁ g |
% , o= B} yg 5.3
b 2 y, d . '
o (’,/ 4
< p -~

Several years ago, Google began working on its own custom software for machine
learning and artificial intelligence workloads, dubbed rFlow. Last year, the company
announced that it had designed its own tensor processing unit (TPU), an ASIC designed
for high throughput of low-precision arithmetic. Now, Google has released some
performance data for their TPU and how it compares to Intel's Haswell CPUs and Nvidia’s

In-Datacenter Performance Analysis of a Tensor Processing Unit™

MNorman P. Jouppi, Chiff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chnis Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Jeffrey Diean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C.
Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibharz, Aaron Jaffey, Alek Jaworsk:, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Marayanaswami, Ray Ni, Kathy Nix, Thomas Nome, Mark Omemick, Narayana Penukonda, Andy Phelps, Jonathan Ross,
Matt Ross, Amir Salek, Emad Samadiani, Chns Severn, Gregory Stzikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Ernick Tuttle, Vijay Vasudevan, Richard Walter, Walter
Wang, Eric Wilcox, and Doe Hyun Yoon
Groagle, Inc., Mownain View, CA USA
Email: {jouppi, cliffy, nishantpatil, davidpatterson} Bgoogle.com

To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.

Abstract
Many architects believe that major improvements in cost-energy-performance muost now come from domain-specific
hardware. This paper evaluates a custom ASIC—called a Tensor Processing Unit (TPL)— d:plu}r:ﬁm-—l'
since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is § 65,536 8-bit MAC
maitrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28

sofftware-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile
response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs
(caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more
than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big
memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPL and an
Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level
TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our
datacenters’ NN inference demand. Despite low utilization for some applications, tlle TPU is on RVETREE about 15X -
JOX faster than its contemporary GPU or CPU, with TOPS/Watt a : :
GDDRS memory in the TPU would triple achieved TOPS and raise| TOPS/Watt to nearly 70X the GPU and 200X the
CPL.
Index terms=DNN, MLP, CNN, RNN, LSTM, neural network, domain-specific architecture, accelerator

spcl.inf.ethz.ch

yW@spcl_eth

ETH:zurich

e «n ETHzUrich

Learning goals for today

So far:

* Programming with locks and critical sections
* Key guidelines and trade-offs

* Bad interleavings (high level races)

Now:

= The unfortunate reality of parallel programming in practice — memory models
= Why you must avoid data races (= low level races / memory reorderings)
= |mplementation of a Mutex with Atomic Registers

Dekker’s algorithm

Peterson’s algorithm

= Context: remember you will not use these locks (you will use functions provided by the programming language!)
YET: you will learn important principles by “doing” — and watching your (our) mistakes carefully

“Tell me and | forget, teach me and | may remember, involve me and | learn.”

e «n ETHzUrich

Motivation

class C {

There is no interleaving of f and g that would

pr':.Lvate :!-nt X = 0; cause the assertion to fail:
private int y = 0;

Thread 1 OO0 v
x =1; @® ®0B®0 v
y = 1; @006 v
} OB v
Thread 2 @@@ v
%ni z =yY; © OP®® v
assert(b >= a);

, } Can this fail?

Proof by exhaustion (or full enumeration)!

e «n ETHzUrich

A little combinatorial excursion

= Assuming 2 threads and k statements each, how many interleavings are there?
= Any ideas?

= Hint1l
= The merged list has length k+k=2k

= Once we know which k positions in the merged list are occupied with elements from thread 1 (or 2) then the
interleaving is determined!

= How many are those?
= Hint2
= This is equivalent to sampling without replacement (draw the k positions out of 2k total)
“Ziehen ohne Zuruecklegen”

- ()-0(%)

= |f you cannot sleep tonight:
= Generalize this to n threads ©

e «n ETHzUrich

Another proof

class C { There is no interleaving of £ and g causing the assertion to fail
private int x = 0; Another proof (by contradiction):
private int y = ©; Assume b<a = a==1 and b==0.
Thread 1
X = 1; But if a==1 = y=1 happened before a=y.
y = 1; And if b==0 = b=x happened before x=1.
} Because we assume that programs execute in order:
Thread 2 _ _
) a=y happened before b=Xx
int a = y; x=1 happened before y=1
int b = x;
assert(b >= a); So by transitivity,
} a=y happened before b=x happened before x=1 happened before

y=1 happened before a=y = Contradiction ¢

}

NS Twosdan ETHZzirich

Let’s try that on my laptop

WHAT ﬂlllll.'llLlLﬂSﬂ BLY,G
WRONG2 - .

= A
n‘.‘ A

e «n ETHzUrich

Why it still can fail: Memory reordering

Rule of thumb: Compiler and hardware allowed to make changes that do
not affect the semantics of a sequentially executed program

void f() { void f() { void f() {
X =1 semantically x =15 semantically x =15
y = x+1; equivalent? z = X+1; equivalent? z = 2;
Z = X+1; y = X+1; y = 2;
} } }

In a sequential world!

e «n ETHzUrich

Memory reordering: A software view

Modern compilers do not give guarantees that a global ordering of memory accesses is provided:
* Some memory accesses may be even optimized away completely!

* Class question: why?

* Huge potential for optimizations — and for errors, when you make the wrong assumptions

Dead code elimination

Register hoisting

Locality optimizations
« .. many more (beyond this basic class)

spcl.inf.ethz.ch
,@spcl_eth

ETH:zurich

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X = 1;
while(x==1);
}

void arrive(){
X = 2;

Consider
thread A calling wait and
thread B subsequently calling arrive.

wait

What would you naively expect?

arrive

'

e «n ETHzUrich

Example: Fail with self-made rendezvous (C / GCC)

int Xx;
o Assembly without optimization Assembly with optimization
void wait () { movl $Ox1, x mov1l $0x1, x
_ 1 . test: test:
X =41 mov X, 7%eax jmp test D

while(x==1); cmp $0x1, %eax
} je test jmp: jump always

je: jump (only) if equal,

i.e., if cmp yields true

void arrive(){ movl $0x2, x

movl $0x2, x
X = 2;

e «n ETHzUrich

Memory reordering: A hardware view

Modern multiprocessors do not enforce global ordering of all instructions:
* What they actually guarantee varies widely!

* Class question: why?

* For performance!
. Most processors have a pipelined architecture and can execute (parts of) multiple instructions simultaneously. They
can (and will) even reorder instructions internally.
. Each processor has a local cache, and thus loads/stores to shared memory can become visible to other processors
at different times

S ASICL "was e ETHZzUrich

Memory hierachy (one core)

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

13

Pomeon ETHZziirich

14

e «n ETHzUrich

A real-life analogy

*i

Anna global data

C & A -s vV [eftlowle]d A

h t les

Zoe

7 [ofolelel-
LJCZ}‘L Wk 40
Hﬂ“ﬂ V= B T

Fyomcen ETHZzUrich
Sharing memory (schematically)

CPU 1 CPU 2

16

e «n ETHzUrich

Memory models

The exact behavior of threads interacting via shared memory usually depends on hardware, runtime system,
and programming language.

A memory model (e.g., of a programming language like Java) provides (often minimal) guarantees for the
effects of memory operations.

= |eaving open optimization possibilities for hardware and compiler
= but including guidelines for writing correct multithreaded programs

Will come back to this later.

& &l (contract)

e «n ETHzUrich

Implications

We need to learn (a bit) more about Java’s Memory Model.

For now, we know that Java gives certain guarantees in the presence of synchronization.

e «n ETHzUrich

Fixing our example
= Can use synchronization to avoid data races

class C { = Then, indeed, the assertion cannot fail
private int x = 0;
private int y = 0;
void () {

synchronized(this) { x = 1; }
synchronized(this) { y = 1; }
}
void g() {
int a, b;
synchronized(this) { a = y; }
synchronized(this) { b = x; }

assert(b >= a);

e «n ETHzUrich

Another fix
* Java has volatile fields: accesses do not
count as data races
class C { * Implementation: slower than regular fields,
private volatile int x = 0; faster than locks
private volatile int y = 0; * Really for experts: avoid them; use standard
void f() libraries instead
X = 1; * And why do you need code like this anyway?
y = 1;
}
void g() {
int a = y;

int b = Xx;
assert(b >= a);

} } LET'S TRY

AGAIN

e «n ETHzUrich

More realistic example of code that is wrong

class C {
boolean stop = false;

void f() {
while(!stop) {
// draw a monster

idUserQuit();

Thread 1: £ ()
Thread 2: g ()

No guarantee Thread 1 will ever stop.

But honestly it will “likely work in practice”

Pomeon ETHZziirich

What did we learn?

= Compilers and computer architectures will change orders of memory operations
= Consistent with sequential semantics!
= May impact parallel execution ®

= There are some language constructs that forbid such reordering
= We saw synchronized and volatile in Java
= But what do they really mean?
= Now we need to dig a bit deeper (I'd rather not but have to)
It’s quite complex!

= Memory models

RISC-V Memory Consistency Model . WHY DO WE NEED A MEMORY MODEL?
Tutorial

Dan Lustig -

May 7, 2018 e N~ - ...to give everyone a headache?

NVIDIA.

Fwowc «n ETHzlrich
Why (architectural) memory models? For real ...
= You expect instructions to be executed in program order?

= But your compiler, your CPU, and your DRAM reorder! For better performance.

= What will be reordered depends on hardware, e.g., AMDS6 is different than ARM.
= |n single threaded programs this does not cause problems.

= But let’s see a shared-memory multithreading example using x86

Memory ordering in some architectures™™
SPARC xB6

Type Alpha | ARMv7 PA-RISC | POWER AMDG4 |A-64 z/Architecture
RMO | PSO TSO | oostore™

Loads reordered after loads Y Y b i Y Y b i

Loads reordered after stores Y Y L b i b Y b i

Stores reorderad after stores Y b N i b i b b

Stores reordered after loads Y Y Y Y Y Y Y Y Y Y Y Y

Atomic reordered with loads Y Y Y Y Y

Atomic reordered with stores Y b i b i b

Dependent loads reordered Y

Incoherent instruction cache pipeline | Y Y Y Y Y Y Y Y Y

Source: wikipedia

Why memory models, x86 example

Threa/\r hread 2

s

-

|

\ =Y I i =x

What could be the result?

>
>
”
=

OkFr 0

Or O

s ¢ S s o ¢ Qo

[
o
~—~
o
c
—
2
>
<
N
~

spcl.inf.ethz.ch
yW@spcl_eth

ETH:zurich

e «n ETHzUrich

Java Memory Model (JMM): Necessary basics

= JMM restricts allowable outcomes of programs

= You saw that if we don’t have these operations (volatile, synchronized etc.) — outcome can be “arbitrary” (not quite
correct, say unexpected ©)

= JMM defines Actions: read(x) :1 “read variable x, the value read is 1”

= Executions combine actions with ordering:
= Program Order
= Synchronizes-with
= Synchronization Order
= Happens-before

e «n ETHzUrich

JMM: Program Order (PO)

= Program order is a total order of intra-thread actions
= Program statements are NOT a total order across threads!
= Program order does not provide an ordering guarantee for memory accesses!
= The only reason it exists is to provide the link between possible executions and the original program.
= |Intra-thread consistency: Per thread, the PO order is consistent with the threads isolated execution

if (x == 2) { |read(x):2 po if (x == 2) { |read(:e:}:2
y = 1; write(y,1) y = 1; x
} else { } else {
z = 1; po z = 1; write(z,1)
}
} po
rl = y; read(y):1 o _
rl = y; read(jf}.1|

e «n ETHzUrich

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

= Synchronization actions are: volatile int x, y;
= Read/write of a volatile variable x =1, y = 1;
= Lock monitor, unlock monitor int rl = vy; | int r2 = x;

= First/last action of a thread (synthetic)
= Actions which start a thread

= Actions which determine if a thread has terminated Exercise: List all outcomes
(r1,r2) allowed by the JMM.

= Synchronization Actions form the Synchronization Order (SO)
= SO s a total order
= All threads see SA in the same order
= SA within a thread are in PO
= SO is consistent: all reads in SO see the last writes in SO

e «n ETHzUrich

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

= SW only pairs the specific actions which "see" each other
= A volatile write to x synchronizes with subsequent read of x (subsequent in SO)
= The transitive closure of PO and SW forms HB

HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

= This means races are allowed!

Pomeon ETHZziirich

Example
int x; volatile int g; int x; volatile int g;
x =1; |write(x, 1) ||1int rl = g; |read(g):1 X = 1; |write(x, 1) || 1int rl = g; |[read(g):0
hb hb hb hb hb
g = 1; |write(g, 1) || int r2 = x; |read(x):1 g = 1; |vrite(g, 1) || int r2 = X; |read(x):0

Case 2: HB consistent, observe the default value

. . . hb
Case 1: HB consistent, observe the latest write in — (r1,72) = (0,0)

(r1,72) = (1,1)

int x; volatile int g; int x; volatile int g;
X =1; |write(x, 1) ||1int rl = g; |read(g):0 X =1; |write(x, 1)||1nt rl = g; |read(g):1
hb hb hb hb hb
g =1; |write(g, 1) || 1int r2 = x; |read(x):1 g =1; |write(g, 1) || int r2 = X; |read(x):0
Case 3: HB consistent (!), reading via race! Case 4: HB inconsistent, execution can be thrown away

(r1.72) = (0,1)

30

.-@s;pcl_t'eth E'HZUfICh

Behind Locks
Implementation of Mutual Exclusion

e «n ETHzUrich

Assumptions Will make «atomic»

more precise today.
In the following we assume

1) atomic reads and writes of variables of primitive type
2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)
3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can arbitrarily interleave.
We make no assumptions for progress in non-critical section!

e «n ETHzUrich

Critical sections

Pieces of code with the following conditions
1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

According to M. Ben Ari, Principles of Concurrent and Distributed Programming

e «n ETHzUrich

Critical section problem

global (shared) variables |
Easy to implement on a

single-core machine.

Process P Process Q How?
local variables local variables
loop loop
non-critical section non-critical section
preprotocol preprotocol
critical section critical section

postprotocol postprotocol

e «n ETHzUrich

Easy to implement on a single core system ...

global (shared) variables

Process P Process Q
local variables local variables
loop loop
non-critical section non-critical section
Switch off IRQs Switch off IRQs
critical section critical section

Switch on IRQs Switch on IRQs

e «n ETHzUrich

Mutual exclusion for 2 processes -- 1st Try

volatile boolean wantp=false, wantg=false

Process P Process Q Do you see the problem?
local variables local variables

loop loop

pl non-critical section gl non-critical section

P2 while(wantq); g2 while(wantp);

pP3 wantp = true g3 wantq = true

p4 critical section g4 critical section

PO wantp = false gs wantq = false

pl, g1, false, false

'

pl, g2, false, false

'

pl, g3, false, false

‘

pl, g4, false, true

'

q

p2, ql, false, false

'

p2, g2, false, false

v

p2, q3, false, false

‘

p2, g4, false, true

|

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 while(wantp)
while(wantq)

3 wantp =true
wantq = true

q

critical section

p3, ql, false, false

'

p3, q2, false, false

!

p3, g3, false, false

'

p3, g4, false, true

‘

spcl.inf.ethz.ch
,@spcl_eth

5 wantp = false
wantq = false

ﬁ

p4, ql, true, false

'

p4, g2, true, false

p4, g3, true, false

‘

p4, g4, true, true

¢

no mutual exclusion !

ETH:zurich

e «n ETHzUrich

Observation: state space diagram too large

volatile bool Only of interest: state transitions of the protocol.
pl/ql is identical to p2/g2 — call state 2
p4/94 is identical to p5/g5 — call state 5

FIOEEss Then forbidden: both processes in state 5
local variables

loop .oup

pl non-critical section gl non-critical section

P2 while(wantq); g2 while(wantp);

pP3 wantp = true g3 wantq = true

p4 critical section g4 critical section

PS wantp = false go wantq = false

e «n ETHzUrich

Reduced state space diagram [p, g, wantp, wantq] — only states 2, 3, and 5

.1 non-critical section >2 await wantg ==false 3 _ wantp=true 4 critical section >5 wantp = false
await wantp == false wantg = true wantq = false
All of interest covered:
'. ... ’. ...‘ '.

¥ p2,q2, false, false == p3, g2, false, false === p5, g2, true, false

‘ B, ‘ TSRS

¥ p2,q3, false, false === p3, g3, false, false = p5, g3, true, false

‘ ‘ ‘

¥ p2, g5, false, true p3, g5, false, true =P p5, g5, true, true

no mutual exclusion !

e «n ETHzUrich

Mutual exclusion for 2 processes -- 2nd Try

volatile boolean wantp=false, wantqg=false

Process P Process Q Do you see the problem?
local variables local variables

loop loop

pl non-critical section ql non-critical section

p2 wantp = true q2 wantq = true

p3 while(wantq); q3 while(wantp):

pa critical section q4 critical section

PS5 wantp = false g5 wantq = false

e «n ETHzUrich

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 wantp=true 3 while(wantp) 4 critical section 5 wantp = false
wantg = true while(wantq) wantq = false

-7 p2,92, false, false === p3, g2, true, false =P p5, g2, true, false

P2, g5, false, true === p3, g5, true, true

deadlock !

e «n ETHzUrich

Mutual exclusion for 2 processes -- 3rd Try

volatile int turn = 1;

Process P Process Q Do you see the problem?
local variables local variables

loop loop

pl non-critical section ql non-critical section

p2 while(turn !=1); g2 while(turn != 2);

p3 critical section q3 critical section

pa turn=2 qd turn=1

e «n ETHzUrich

State space diagram [p, q, turn]

.................... We have not made any
....................................... assumptions about progress
""""""""" outside of the CS...

starvation!

e «n ETHzUrich

A combination of the tries 2 and 3: Decker’s Algorithm

volatile boolean wantp=false, wantg=false, integer turn=1

Process P only when q Process Q
loop tries to get loop
non-critical section lock non-critical section
wantp = true and q has wantq = true
while (wantq) { preference while (wantp) {
if (turn==2){ if (turn == 1) {

wantp = false; 1] PIOTEED wantq = false

while(turn!=1); and wait while(turn != 2);
wantp = true; }} wantq = true; }}
critical section and try again critical section
turn=2 turn=1
wantp = false wantq = false

Pomeon ETHZziirich

More concise than Decker: Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim=1

Process P (1) Process Q (2)

loop loop
non-critical seM non-critical section
flag[P] = tru flag[Q] = true
victim = Q

victim=P

while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical section

flag[Q] = false

critical sect
flag[P] = false

45

e «n ETHzUrich

We want to prove ...

that the Peterson Lock satisfies mutual exclusion
and that it is starvation free

How?

Requires some notation first.

e «n ETHzUrich

Events and precedence

Threads produce a sequence of events

P produces events pg, P41, ... :
programs usually consist of loops,

therefore we might need to count
occurences

e.g., p; = "flag[P] = true"

j-th occurence of event i in thread P: p’l:

e.g., pg’ = "flag[P] = false" in the third iteration

Precedence relation: we write a — b when a occurs before b.
Note that the precedence relation "=" is a total order for events.

e «n ETHzUrich

Intervals

(ag, a,): interval of events a,, a; with ay; — a;
With I, = (ag,a,) and Iz = (by, b;) we write I, — Ig if a; = by

a Iy a a; Iy as
A————M ——————————————————————— M ———————————————————————————————————————
by Iz b1 by I by
—————————————————————— M——————————————M————————————————————————————-
B >
time
IB’ -+ IA’
%
IA_)IB IB IA’ IA/ -/—)IB/

we say "I, precedes [;" and "I; and [, are concurrent”

e «n ETHzUrich

Atomic register

Register: basic memory object, can be shared or not
i.e., in this context register + register of a CPU

Register r : operations r.read() and r.write(v)

Atomic Register:

An invocation J of r.read or r.write takes effect at a single point 7(J) in time
7(J) always lies between start and end of the operation J
Two operations J and K on the same register always have a different effect time 7(J) + 7(K)

An invocation J of r.read() returns the value v written by the invocation K of r.write(v) with closest
preceding effect time 7(K)

e «n ETHzUrich

Example
K M
r.read() >1 . rwrite(8)
G — O s U — P U ——— ___I——
rwrite(4) r.read() 24
SR) A E—— P NN N— < S—
N
rwrite(1) r.read()—>8

o N R — S —

(J) 7(K) (M) t(N) (L) 7(0) time

e «n ETHzUrich

Atomic register

Assumptions for Atomic Registers justify to treat operations on them as events taking place at a single point
in time.

Will use this in the following proofs.

Note that even with atomic registers there can still be non-determinism of programs because nothing is said
about the order of effect times for concurrent operations.

e «n ETHzUrich

flag[P] = true
Proof: Mutual exclusion (Peterson) vici[m]=p
while (flag[Q] && victim == P){}
By contradiction: assume concurrent CS, and CS, [A] Cs,
Assume without loss of generality: flag[P] = false
W (victim=Q) — W,(victim=P)]
A + C = must read false B = must read P [C]

From the code:

W, (flag[P]=true) — Wy(victim = P)=>R(flag[Q]) = Ry(victim) — CS,

transitivity of "— "
"write of P" = must read true %
W (flag[Q]=true) =>W(victim = Q) — Rq(flag[P]) = Rq(victim) — CSq

"read of Q"

e «n ETHzUrich

flag[P] = true

Proof: Freedom from starvation victim = P
while (flag[Q] && victim == P){}
CSp

flag[P] = false

By (exhaustive) contradition
Assume without loss of generality that P runs forever in its lock loop, waiting until flag[Q]==false or
victim != P.
Possibilities for Q:
stuck in nonCS
= flag[Q] = false and P can continue. Contradiction.

repeatedly entering and leaving its CS
= sets victim to Q when entering.
Now victim cannot be changed = P can continue. Contradiction.
stuck in its lock loop waiting until flag[P]==false orvictim != Q.
But victim == Pandvictim == Q cannot hold at the same time. Contradiction.

Peterson in Java

class PetersonLock

{

volatile boolean flag[] = new boolean[2];
volatile int victim;

public void Acquire(int id)

{
flag[id] = true;
victim = id;
while (flag[1l-id] && victim == id);
}
public void Release(int id)
{
flag[id] = false;
}

e «n ETHzUrich

Volatile reference to an array and not an
array of volatile variables!

This example may work in practice.
However, for production programs it is
recommended to use Java’s
Atomicinteger and AtomiclntegerArray.

e «n ETHzUrich

More than two threads

= How to extend Peterson’s lock to more than 2 threads?
= Think about it, | will present a solution in tomorrow's lecture.

