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So far:

• Programming with locks and critical sections

• Key guidelines and trade-offs

• Bad interleavings (high level races)

Now:
 The unfortunate reality of parallel programming in practice – memory models

 Why you must avoid data races (= low level races / memory reorderings)

 Implementation of a Mutex with Atomic Registers

Dekker’s algorithm

Peterson’s algorithm

 Context: remember you will not use these locks (you will use functions provided by the programming language!)
YET: you will learn important principles by “doing” – and watching your (our) mistakes carefully

“Tell me and I forget, teach me and I may remember, involve me and I learn.”

Learning goals for today
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class C {
private int x = 0;
private int y = 0;
void f() {
x = 1;
y = 1;

}
void g() {
int a = y;
int b = x;
assert(b >= a);

}   
}

Motivation

There is no interleaving of f and g that would 
cause the assertion to fail:

Proof by exhaustion (or full enumeration)!
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Can this fail?
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Thread 1

Thread 2
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 Assuming 2 threads and k statements each, how many interleavings are there?

 Any ideas?

 Hint 1

 The merged list has length k+k=2k

 Once we know which k positions in the merged list are occupied with elements from thread 1 (or 2) then the 
interleaving is determined!

 How many are those?

 Hint 2

 This is equivalent to sampling without replacement (draw the k positions out of 2k total)

“Ziehen ohne Zuruecklegen”


2𝑘
𝑘

= 𝑂
4𝑛

2𝑛

 If you cannot sleep tonight:

 Generalize this to n threads 
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A little combinatorial excursion
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There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.  

But if a==1 ⇒ y=1 happened before a=y.  
And if b==0 ⇒ b=x happened before x=1.  

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

So by transitivity, 
a=y happened before b=x happened before x=1 happened before 
y=1 happened before a=y ⇒Contradiction 

Another proof
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class C {
private int x = 0;
private int y = 0;
void f() {
x = 1;
y = 1;

}
void g() {
int a = y;
int b = x;
assert(b >= a);

}   
}

Thread 1

Thread 2
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Let’s try that on my laptop
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void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do 
not affect the semantics of a sequentially executed program

semantically

equivalent?

In a sequential world!
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void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?
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Modern compilers do not give guarantees that a global ordering of memory accesses is provided:

• Some memory accesses may be even optimized away completely!

• Class question: why?

• Huge potential for optimizations – and for errors, when you make the wrong assumptions

• Dead code elimination

• Register hoisting

• Locality optimizations

• … many more (beyond this basic class)

Memory reordering: A software view
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int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Consider 

thread A calling wait and 

thread B subsequently calling arrive.

What would you naively expect?

A B

wait

arrive
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int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov    x, %eax

cmp    $0x1, %eax

je     test

movl $0x2, x

Assembly with optimization

movl   $0x1, x

test: 

jmp    test

movl $0x2, x

je: jump (only) if equal, 
i.e., if cmp yields true

jmp: jump always

11
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Modern multiprocessors do not enforce global ordering of all instructions:

• What they actually guarantee varies widely!

• Class question: why?

• For performance!

• Most processors have a pipelined architecture and can execute (parts of) multiple instructions simultaneously. They 
can (and will) even reorder instructions internally.

• Each processor has a local cache, and thus loads/stores to shared memory can become visible to other processors 
at different times

Memory reordering: A hardware view
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Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity
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ALUs
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Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory
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Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs
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A real-life analogy

Zoe

Anna

Beat

local data

global data
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Sharing memory (schematically)

CPU 1 CPU 2

Core 1 Core 1Core 2 Core 2

L1 L1L1 L1

L2 L2

System Memory

System Bus

Registers Registers Registers Registers
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The exact behavior of threads interacting via shared memory usually depends on hardware, runtime system, 
and programming language.

A memory model (e.g., of a programming language like Java) provides (often minimal) guarantees for the 
effects of memory operations.

 leaving open optimization possibilities for hardware and compiler

 but including guidelines for writing correct multithreaded programs

Will come back to this later.

Memory models
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合同 (contract)
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We need to learn (a bit) more about Java’s Memory Model.

For now, we know that Java gives certain guarantees in the presence of synchronization.

Implications
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class C {
private int x = 0;
private int y = 0;
void f() {

synchronized(this) { x = 1; }
synchronized(this) { y = 1; }

}
void g() {

int a, b;
synchronized(this) { a = y; }
synchronized(this) { b = x; }
assert(b >= a);

}   
}

Fixing our example
 Can use synchronization to avoid data races

 Then, indeed, the assertion cannot fail

19
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class C {
private volatile int x = 0;
private volatile int y = 0;
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a);

}   
}

Another fix
• Java has volatile fields: accesses do not 

count as data races

• Implementation: slower than regular fields, 
faster than locks

• Really for experts: avoid them; use standard 
libraries instead

• And why do you need code like this anyway?

20
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class C {
boolean stop = false;

void f() {
while(!stop) {
// draw a monster

}
}

void g() {
stop = didUserQuit();

}   
}

More realistic example of code that is wrong

Thread 1:  f()

Thread 2:  g()

No guarantee Thread 1 will ever stop.

But honestly it will “likely work in practice”

21
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 Compilers and computer architectures will change orders of memory operations

 Consistent with sequential semantics!

 May impact parallel execution 

 There are some language constructs that forbid such reordering

 We saw synchronized and volatile in Java

 But what do they really mean?

 Now we need to dig a bit deeper (I’d rather not but have to)

It’s quite complex!

 Memory models

22

What did we learn?
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 You expect instructions to be executed in program order?

 But your compiler, your CPU, and your DRAM reorder! For better performance.

 What will be reordered depends on hardware, e.g., AMD86 is different than ARM.

 In single threaded programs this does not cause problems.

 But let’s see a shared-memory multithreading example using x86

23

Why (architectural) memory models? For real …

Source: wikipedia
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Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)
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 JMM restricts allowable outcomes of programs

 You saw that if we don’t have these operations (volatile, synchronized etc.) – outcome can be “arbitrary” (not quite 
correct, say unexpected )

 JMM defines Actions: read(x):1 “read variable x, the value read is 1”

 Executions combine actions with ordering:

 Program Order

 Synchronizes-with

 Synchronization Order

 Happens-before

25

Java Memory Model (JMM): Necessary basics
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 Program order is a total order of intra-thread actions

 Program statements are NOT a total order across threads!

 Program order does not provide an ordering guarantee for memory accesses! 

 The only reason it exists is to provide the link between possible executions and the original program.

 Intra-thread consistency: Per thread, the PO order is consistent with the threads isolated execution

26

JMM: Program Order (PO)
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 Synchronization actions are:

 Read/write of a volatile variable

 Lock monitor, unlock monitor

 First/last action of a thread (synthetic) 

 Actions which start a thread

 Actions which determine if a thread has terminated

 Synchronization Actions form the Synchronization Order (SO)

 SO is a total order 

 All threads see SA in the same order

 SA within a thread are in PO

 SO is consistent: all reads in SO see the last writes in SO

27

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

Exercise: List all outcomes 

(r1,r2) allowed by the JMM.
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 SW only pairs the specific actions which "see" each other

 A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

 The transitive closure of PO and SW forms HB

 HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered 
write.

 This means races are allowed!
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JMM: Synchronizes-With (SW) / Happens-Before (HB) orders
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Example
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Behind Locks

Implementation of Mutual Exclusion
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In the following we assume 

1) atomic reads and writes of variables of primitive type

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)

3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can arbitrarily interleave. 

We make no assumptions for progress in non-critical section!

Assumptions
Will make «atomic» 

more precise today.

32
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Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must 
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must 
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 33
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Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables
Easy to implement on a 

single-core machine. 
How?

34
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Process P

local variables

loop

non-critical section

?

critical section

?

Easy to implement on a single core system ...

Process Q

local variables

loop

non-critical section

?

critical section

?

global (shared) variables

Switch off IRQs Switch off IRQs

Switch on IRQs Switch on IRQs

35
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Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes  -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

36

Do you see the problem?
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State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

no mutual exclusion !

1 non-critical section 2 while(wantp) 3 wantp = true  4 critical section 5 wantp = false  
while(wantq) wantq = true wantq = false

37
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Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Observation: state space diagram too large

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=falseOnly of interest: state transitions of the protocol. 

p1/q1 is identical to p2/q2 – call state 2

p4/q4 is identical to p5/q5 – call state 5

Then forbidden: both processes in state 5

38
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All of interest covered:

Reduced state space diagram [p, q, wantp, wantq] – only states 2, 3, and 5 

p2, q2, false, false

p2, q3, false, false p3, q3, false, false

p3, q2, false, false p5, q2, true, false

p5, q3, true, false

p2, q5, false, true p3, q5, false, true p5, q5, true, true

no mutual exclusion !

1 non-critical section 2 await wantq == false 3 wantp = true  4 critical section 5 wantp = false  
await wantp == false wantq = true wantq = false

39
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Process P

local variables

loop

p1 non-critical section

p2 wantp = true

p3 while(wantq);

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q

local variables

loop

q1 non-critical section

q2 wantq = true

q3 while(wantp):

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

Do you see the problem?

40
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State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

41

1 non-critical section 2 wantp = true 3 while(wantp)  4 critical section 5 wantp = false  
wantq = true while(wantq) wantq = false
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Process P

local variables

loop

p1 non-critical section

p2 while(turn != 1);

p3 critical section

p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q

local variables

loop

q1 non-critical section

q2 while(turn != 2);

q3 critical section

q4 turn = 1

volatile int turn = 1;

42

Do you see the problem?
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State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any 

assumptions about progress 

outside of the CS...

43
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Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn!=1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q 
tries to get 
lock

and q has 
preference

let q proceed

and wait

and try again

44
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Process P (1)

loop

non-critical section

flag[P] = true 

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false]; 
volatile integer victim = 1

I am 
interested

but you go 
first

We both are
interested

And you go first

45



spcl.inf.ethz.ch

@spcl_eth

that the Peterson Lock satisfies mutual exclusion

and that it is starvation free

How?

Requires some notation first.

We want to prove ...

46
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Threads produce a sequence of events 

P produces events 𝒑𝟎, 𝒑𝟏, …

e.g., 𝑝1 = "flag[P] = true"

j-th occurence of event i in thread P: 𝒑𝒊
𝒋

e.g., 𝑝5
3 = "flag[P] = false" in the third iteration

Precedence relation: we write 𝒂 → 𝒃 when a occurs before b. 

Note that the precedence relation "→" is a total order for events.

Events and precedence

programs usually consist of loops, 
therefore we might need to count 

occurences

47
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𝑎0, 𝑎1 : interval of events 𝑎0, 𝑎1 with 𝑎0 → 𝑎1

With 𝐼𝐴 = (𝑎0, 𝑎1) and 𝐼𝐵 = (𝑏0, 𝑏1) we write 𝑰𝑨 → 𝑰𝑩 if 𝒂𝟏 → 𝒃𝟎

we say "𝐼𝐴 precedes 𝐼𝐵" and "𝐼𝐵′ and 𝐼𝐴′ are concurrent"

Intervals

B
time

A

𝑎0 𝑎1

𝑏0 𝑏1

𝐼𝐴

𝐼𝐵

𝑎2 𝑎3𝐼𝐴′

𝑏0 𝑏1𝐼𝐵′

𝐼𝐴 → 𝐼𝐵 𝐼𝐵 → 𝐼𝐴′
𝐼𝐵′ ↛ 𝐼𝐴′
𝐼𝐴′ ↛ 𝐼𝐵′
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Register: basic memory object, can be shared or not
i.e., in this context register ≠ register of a CPU

Register r : operations r.read() and r.write(v)

Atomic Register:

 An invocation J of r.read or r.write takes effect at a single point 𝝉(𝑱) in time

 𝝉(𝑱) always lies between start and end of the operation J

 Two operations J and K on the same register always have a different effect time 𝝉(𝑱) ≠ 𝝉(𝑲)

 An invocation J of r.read() returns the value v written by the invocation K of r.write(v) with closest 
preceding effect time 𝝉(𝑲)

Atomic register

49
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Example

A

r.read()

B

r.write(4)

time

r.write(8)

r.read()

C
r.write(1) r.read()

𝝉 𝑱 𝝉 𝑲 𝝉 𝑴 𝝉 𝑵 𝝉 𝑳 𝝉 𝑶

K M

J

L

N

O
1

8

4
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Assumptions for Atomic Registers justify to treat operations on them as events taking place at a single point 
in time.

Will use this in the following proofs.

Note that even with atomic registers there can still be non-determinism of programs because nothing is said 
about the order of effect times for concurrent operations.

Atomic register

51
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By contradiction: assume concurrent CSP and CSQ [A]

Assume without loss of generality:

WQ(victim=Q) → WP(victim=P) [B]

From the code:

WP(flag[P]=true) → WP(victim = P) → RP(flag[Q]) → RP(victim) → CSP

WQ(flag[Q]=true) → WQ(victim = Q) → RQ(flag[P]) → RQ(victim) → CSQ

Proof: Mutual exclusion (Peterson)
flag[P] = true 

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

B ⇒ must read P [C]A + C⇒ must read false

"write of P"

"read of Q"

transitivity of "→ " 
⇒ must read true 
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By (exhaustive) contradition

Assume without loss of generality that P runs forever in its lock loop, waiting until flag[Q]==false or 
victim != P.

Possibilities for Q:

stuck in nonCS 

⇒ flag[Q] = false and P can continue. Contradiction.

repeatedly entering and leaving its CS 

⇒ sets victim to Q when entering. 

Now victim cannot be changed ⇒ P can continue. Contradiction.

stuck in its lock loop waiting until flag[P]==false or victim != Q. 

But victim == P and victim == Q cannot hold at the same time. Contradiction.

Proof: Freedom from starvation
flag[P] = true 

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

53
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class PetersonLock

{

volatile boolean flag[] = new boolean[2]; 

volatile int victim;

public void Acquire(int id)

{

flag[id] = true;

victim = id;

while (flag[1-id] && victim == id);

}

public void Release(int id)

{

flag[id] = false;

}

}

Peterson in Java

Volatile reference to an array and not an 
array of volatile variables!

This example may work in practice. 
However, for production programs it is 

recommended to use Java’s  
AtomicInteger and AtomicIntegerArray.
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 How to extend Peterson’s lock to more than 2 threads?

 Think about it, I will present a solution in tomorrow's lecture.

More than two threads
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