
spcl.inf.ethz.ch

@spcl_eth

TORSTENHOEFLER

Parallel Programming, Spring 2019, Lecture 15:

Solving Mutual Exclusion for many processes,
Hardware Primitives for mutual exclusion.

spcl.inf.ethz.ch

@spcl_eth

Á Head TA for the second section: Timo Schneider

Á If anything goes wrong during an exercise: call him J

Á+41764688942

Á If anything non-urgent happens, send him email

Á timos@inf.ethz.ch

3

Administrivia

mailto:timos@inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

So far:

Å Simple proofs of correctness and unexpected problems with real computers

Å Memory models as contract between programmer, compiler, runtime, and architecture

Å WŀǾŀΩǎ ǾƻƭŀǘƛƭŜ ŀƴŘ ǎȅƴŎƘǊƻƴƛȊŜŘ
Å Some (not so great) locks

Now:
Á Implementation of a two-thread locks with Atomic Registers
5ŜƪƪŜǊΩǎ ŀƭƎƻǊƛǘƘƳ
tŜǘŜǊǎƻƴΩǎ ŀƭƎƻǊƛǘƘƳ

Á Implementation of n-thread locks with Atomic Registers
Filter lock
Bakery lock

Á Context: remember you will not use these locks (you will use functions provided by the programming model!)
¸9¢Υ ȅƻǳ ǿƛƭƭ ƭŜŀǊƴ ƛƳǇƻǊǘŀƴǘ ǇǊƛƴŎƛǇƭŜǎ ōȅ άŘƻƛƴƎέ ςand watching your (our) mistakes carefully

ά¢Ŝƭƭ ƳŜ ŀƴŘ L ŦƻǊƎŜǘΣ ǘŜŀŎƘ ƳŜ ŀƴŘ L Ƴŀȅ ǊŜƳŜƳōŜǊΣ ƛƴǾƻƭǾŜ ƳŜ ŀƴŘ L ƭŜŀǊƴΦέ

Learning goals for today

4

spcl.inf.ethz.ch

@spcl_eth

Á Memory models provide (often minimal) guarantees for visibility of memory operations

ÁContract between programmer, compiler, architecture about semantics

ÁDetails are far from trivial ςcf. SteuergesetzKanton Zurich

Yet, if one wants to really understand an example ςƛǘΩǎ ǘƘŜ ǊŜŦŜǊŜƴŎŜΗ

ÁFor our purposes, remember volatileand synchronized()

Roughly: Memory operations will not be reordered with respect to
accesses to volatile variables or synchronized blocks.

Á We should still be able to understand the laws of the memory model ςthus quick repetition

ÁNo worry, you will do this yourself in exercises

ÁProgram order ςorder in which statements are executed (or course, meaning the actions resulting from statements!)

ÁSynchronization order ςorder of synchronzingmemory actions (in the same thread)!

ÁSynchronizes with ςorder of observed synchronizing memory actions across threads

ÁHappens before ςthe union (transitive closure) of PO and SW

5

Remember the Java Memory Model?

spcl.inf.ethz.ch

@spcl_eth

6

Examples

spcl.inf.ethz.ch

@spcl_eth

Behind Locks

Implementationof Mutual Exclusion

7

spcl.inf.ethz.ch

@spcl_eth

In the following we assume

1) atomic reads and writes of variables of primitive type

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)

3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can arbitrarily interleave.

We make no assumptions for progress in non-critical section!

Assumptions
Will make «atomic»

more precise today.

8

spcl.inf.ethz.ch

@spcl_eth

Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if anyprocess tries to enter its critical section, then that process must
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 9

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables
Easy to implement on a

single-core machine.
How?

10

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

?

critical section

?

Easy to implement on a single core system ...

Process Q

local variables

loop

non-critical section

?

critical section

?

global (shared) variables

Switch off IRQs Switch off IRQs

Switch on IRQs Switch on IRQs

11

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

12

Do youseethe problem?

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

no mutual exclusion !

1 non-critical section 2 while(wantp)3 wantp = true 4 criticalsection 5 wantp = false
while(wantq) wantq = true wantq = false

13

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Observation: statespacediagramtoo large

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=falseOnly of interest: state transitions of the protocol.

p1/q1 is identical to p2/q2 ïcall state 2

p4/q4 is identical to p5/q5 ïcall state 5

Then forbidden: both processes in state 5

14

spcl.inf.ethz.ch

@spcl_eth

All of interest covered:

Reduced state space diagram [p, q, wantp, wantq] ςonly states 2, 3, and 5

p2, q2, false, false

p2, q3, false, false p3, q3, false, false

p3, q2, false, false p5, q2, true, false

p5, q3, true, false

p2, q5, false, true p3, q5, false, true p5, q5, true, true

no mutual exclusion !

1 non-critical section 2 await wantq == false 3 wantp = true 4 critical section 5 wantp = false
await wantp == false wantq = true wantq = false

15

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 wantp = true

p3 while(wantq);

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q

local variables

loop

q1 non-critical section

q2 wantq = true

q3 while(wantp):

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

Do youseethe problem?

16

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

17

1 non-critical section 2 wantp = true 3 while(wantp) 4 critical section 5 wantp = false
wantq = true while(wantq) wantq = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(turn != 1);

p3 critical section

p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q

local variables

loop

q1 non-critical section

q2 while(turn != 2);

q3 critical section

q4 turn = 1

volatile int turn = 1;

18

Do youseethe problem?

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any

assumptions about progress

outside of the CS...

19

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

! ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǘƘŜ ǘǊƛŜǎ н ŀƴŘ оΥ 5ŜŎƪŜǊΩǎ !ƭƎƻǊƛǘƘƳ

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn=1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

and try again

20

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

I am
interested

but you go
first

We both are
interested

And you go first

21

spcl.inf.ethz.ch

@spcl_eth

that the Peterson Lock satisfies mutual exclusion

and that it is starvation free

How?

Requires some notation first.

We want to prove ...

22

spcl.inf.ethz.ch

@spcl_eth

Threads produce a sequence of events

P produces events ▬ȟ▬ȟȣ

e.g., ὴ "flag[P] = true"

j-th occurence of event i in thread P: ▬░
▒

e.g., ὴ = "flag[P] = false" in the third iteration

Precedence relation: we write ╪ᴼ╫when a occurs before b.

Note that the precedence relation "O" is a total order for events.

Events and precedence

programs usually consist of loops,
therefore we might need to count

occurences

23

spcl.inf.ethz.ch

@spcl_eth

ὥȟὥ ȡinterval of events ὥ, ὥ with ὥ ᴼὥ

With Ὅ ὥȟὥ and Ὅ ὦȟὦ we write ╘═ᴼ╘║ if ╪ ᴼ╫

we say "ὍprecedesὍ" and ͼὍ and Ὅ are concurrent"

Intervals

B
time

A

ὥ ὥ

ὦ ὦ

Ὅ

Ὅ

ὥ ὥὍ

ὦ ὦὍ

ὍᴼὍ ὍᴼὍ
Ὅ ᵅὍ
Ὅ ᵅὍ

24

spcl.inf.ethz.ch

@spcl_eth

Register: basic memory object, can be shared or not
i.e., in this context register register of a CPU

Register r : operations r.read() and r.write(v)

Atomic Register:

Á An invocation Jof r.reador r.write takes effect at a single point Ⱳ╙in time

Á Ⱳ╙always lies between start and end of the operation J

Á Two operations Jand Kon the same register always have a different effect time Ⱳ╙ Ⱳ╚

Á An invocation Jof r.read() returns the value v written by the invocation Kof r.write(v) with closest
preceding effect time Ⱳ╚

Atomic register

25

spcl.inf.ethz.ch

@spcl_eth

Example

A

r.read()

B

r.write(4)

time

r.write(8)

r.read()

C
r.write(1) r.read()

Ⱳ╙ Ⱳ╚ Ⱳ╜ Ⱳ╝ Ⱳ╛ Ⱳ╞

K M

J

L

N

O
Ą1

Ą8

Ą4

26

spcl.inf.ethz.ch

@spcl_eth

Assumptions for Atomic Registers justify to treat operations on them as events taking place at a single point
in time.

Will use this in the following proofs.

Note that even with atomic registers there can still be non-determinism of programs because nothing is said
about the order of effect times for concurrent operations.

Atomic register

27

spcl.inf.ethz.ch

@spcl_eth

By contradiction: assume concurrent CSP and CSQ [A]

Assume without loss of generality:

WQ(victim=Q) O WP(victim=P) [B]

From the code:

WP(flag[P]=true) O WP(victim = P) O RP(flag[Q]) O RP(victim) O CSP

WQ(flag[Q]=true) O WQ(victim = Q) O RQ(flag[P]) O RQ(victim) O CSQ

Proof: Mutual exclusion (Peterson)
flag[P] = true

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

B ᵼmust read P [C]A + Cᵼmust read false

"write of P"

"read of Q"

transitivity of "ᴼ"
ᵼmust read true 7

28

spcl.inf.ethz.ch

@spcl_eth

By (exhaustive) contradition

Assume without loss of generality that P runs forever in its lock loop, waiting until flag[Q]==false or
victim != P .

Possibilities for Q:

stuck in nonCS

ᵼ flag[Q] = false and P can continue. Contradiction.

repeatedly entering and leaving its CS

ᵼsets victim to Q when entering.

Now victim cannot be changed ᵼP can continue. Contradiction.

stuck in its lock loop waiting until flag[P]==false or victim != Q .

But victim == P and victim == Q cannot hold at the same time. Contradiction.

Proof: Freedom from starvation
flag[P] = true

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

29

spcl.inf.ethz.ch

@spcl_eth

class PetersonLock

{

volatile boolean flag[] = new boolean[2];

volatile int victim;

public void Acquire(int id)

{

flag[id] = true;

victim = id;

while (flag[1 - id] && victim == id);

}

public void Release(int id)

{

flag[id] = false;

}

}

Peterson in Java

Volatile reference to an array and not an
array of volatile variables!

This example may work in practice.
However, for production programs it is

ǊŜŎƻƳƳŜƴŘŜŘ ǘƻ ǳǎŜ WŀǾŀΩǎ
AtomicIntegerand AtomicIntegerArray.

30

spcl.inf.ethz.ch

@spcl_eth

Extension of Peterson's lock to n processes

Every thread t knows his level in the filter level[t]

In order to enter CS, a thread has to elevate all levels.

CƻǊ ŜŀŎƘ ƭŜǾŜƭΣ ǿŜ ǳǎŜ tŜǘŜǊǎƻƴΩǎ ƳŜŎƘŀƴƛǎƳ ǘƻ ŦƛƭǘŜǊ
at most one thread, if other threads are at higher level.

Forevery level l there is one victim victim[l]
that hasto let otherspass in caseof conflicts.

31

The Filter Lock

