
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming, Spring 2019, Lecture 15:

Solving Mutual Exclusion for many processes,
Hardware Primitives for mutual exclusion.

spcl.inf.ethz.ch

@spcl_eth

 Head TA for the second section: Timo Schneider

 If anything goes wrong during an exercise: call him

 +41764688942

 If anything non-urgent happens, send him email

 timos@inf.ethz.ch

3

Administrivia

mailto:timos@inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

So far:

• Simple proofs of correctness and unexpected problems with real computers

• Memory models as contract between programmer, compiler, runtime, and architecture

• Java’s volatile and synchronized
• Some (not so great) locks

Now:
 Implementation of a two-thread locks with Atomic Registers

Dekker’s algorithm
Peterson’s algorithm

 Implementation of n-thread locks with Atomic Registers
Filter lock
Bakery lock

 Context: remember you will not use these locks (you will use functions provided by the programming model!)
YET: you will learn important principles by “doing” – and watching your (our) mistakes carefully

“Tell me and I forget, teach me and I may remember, involve me and I learn.”

Learning goals for today

4

spcl.inf.ethz.ch

@spcl_eth

 Memory models provide (often minimal) guarantees for visibility of memory operations

 Contract between programmer, compiler, architecture about semantics

 Details are far from trivial – cf. Steuergesetz Kanton Zurich

Yet, if one wants to really understand an example – it’s the reference!

 For our purposes, remember volatile and synchronized()

Roughly: Memory operations will not be reordered with respect to
accesses to volatile variables or synchronized blocks.

 We should still be able to understand the laws of the memory model – thus quick repetition

 No worry, you will do this yourself in exercises

 Program order – order in which statements are executed (or course, meaning the actions resulting from statements!)

 Synchronization order – order of synchronzing memory actions (in the same thread)!

 Synchronizes with – order of observed synchronizing memory actions across threads

 Happens before – the union (transitive closure) of PO and SW

5

Remember the Java Memory Model?

spcl.inf.ethz.ch

@spcl_eth

6

Examples

spcl.inf.ethz.ch

@spcl_eth

Behind Locks

Implementation of Mutual Exclusion

7

spcl.inf.ethz.ch

@spcl_eth

In the following we assume

1) atomic reads and writes of variables of primitive type

2) no reordering of read and write sequences (! not true in practice ! here for simplicity !)

3) threads entering a critical section will leave it eventually

Otherwise we assume a multithreaded environment where processes can arbitrarily interleave.

We make no assumptions for progress in non-critical section!

Assumptions
Will make «atomic»

more precise today.

8

spcl.inf.ethz.ch

@spcl_eth

Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 9

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables
Easy to implement on a

single-core machine.
How?

10

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

?

critical section

?

Easy to implement on a single core system ...

Process Q

local variables

loop

non-critical section

?

critical section

?

global (shared) variables

Switch off IRQs Switch off IRQs

Switch on IRQs Switch on IRQs

11

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

12

Do you see the problem?

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

no mutual exclusion !

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

13

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Observation: state space diagram too large

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=falseOnly of interest: state transitions of the protocol.

p1/q1 is identical to p2/q2 – call state 2

p4/q4 is identical to p5/q5 – call state 5

Then forbidden: both processes in state 5

14

spcl.inf.ethz.ch

@spcl_eth

All of interest covered:

Reduced state space diagram [p, q, wantp, wantq] – only states 2, 3, and 5

p2, q2, false, false

p2, q3, false, false p3, q3, false, false

p3, q2, false, false p5, q2, true, false

p5, q3, true, false

p2, q5, false, true p3, q5, false, true p5, q5, true, true

no mutual exclusion !

1 non-critical section 2 await wantq == false 3 wantp = true 4 critical section 5 wantp = false
await wantp == false wantq = true wantq = false

15

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 wantp = true

p3 while(wantq);

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q

local variables

loop

q1 non-critical section

q2 wantq = true

q3 while(wantp):

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

Do you see the problem?

16

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

17

1 non-critical section 2 wantp = true 3 while(wantp) 4 critical section 5 wantp = false
wantq = true while(wantq) wantq = false

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(turn != 1);

p3 critical section

p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q

local variables

loop

q1 non-critical section

q2 while(turn != 2);

q3 critical section

q4 turn = 1

volatile int turn = 1;

18

Do you see the problem?

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any

assumptions about progress

outside of the CS...

19

spcl.inf.ethz.ch

@spcl_eth

Process P
loop

non-critical section
wantp = true
while (wantq) {

if (turn == 2) {
wantp = false;
while(turn != 1);
wantp = true; }}

critical section
turn = 2
wantp = false

A combination of the tries 2 and 3: Decker’s Algorithm

Process Q
loop

non-critical section
wantq = true
while (wantp) {

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}

critical section
turn = 1
wantq = false

volatile boolean wantp=false, wantq=false, integer turn= 1

only when q
tries to get
lock

and q has
preference

let q proceed

and wait

and try again

20

spcl.inf.ethz.ch

@spcl_eth

Process P (1)

loop

non-critical section

flag[P] = true

victim = P

while(flag[Q] && victim == P);

critical section

flag[P] = false

More concise than Decker: Peterson Lock

Process Q (2)

loop

non-critical section

flag[Q] = true

victim = Q

while(flag[P] && victim == Q);

critical section

flag[Q] = false

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim = 1

I am
interested

but you go
first

We both are
interested

And you go first

21

spcl.inf.ethz.ch

@spcl_eth

that the Peterson Lock satisfies mutual exclusion

and that it is starvation free

How?

Requires some notation first.

We want to prove ...

22

spcl.inf.ethz.ch

@spcl_eth

Threads produce a sequence of events

P produces events 𝒑𝟎, 𝒑𝟏, …

e.g., 𝑝1 = "flag[P] = true"

j-th occurence of event i in thread P: 𝒑𝒊
𝒋

e.g., 𝑝5
3 = "flag[P] = false" in the third iteration

Precedence relation: we write 𝒂 → 𝒃 when a occurs before b.

Note that the precedence relation "→" is a total order for events.

Events and precedence

programs usually consist of loops,
therefore we might need to count

occurences

23

spcl.inf.ethz.ch

@spcl_eth

𝑎0, 𝑎1 : interval of events 𝑎0, 𝑎1 with 𝑎0 → 𝑎1

With 𝐼𝐴 = (𝑎0, 𝑎1) and 𝐼𝐵 = (𝑏0, 𝑏1) we write 𝑰𝑨 → 𝑰𝑩 if 𝒂𝟏 → 𝒃𝟎

we say "𝐼𝐴 precedes 𝐼𝐵" and "𝐼𝐵′ and 𝐼𝐴′ are concurrent"

Intervals

B
time

A

𝑎0 𝑎1

𝑏0 𝑏1

𝐼𝐴

𝐼𝐵

𝑎2 𝑎3𝐼𝐴′

𝑏0 𝑏1𝐼𝐵′

𝐼𝐴 → 𝐼𝐵 𝐼𝐵 → 𝐼𝐴′
𝐼𝐵′ ↛ 𝐼𝐴′
𝐼𝐴′ ↛ 𝐼𝐵′

24

spcl.inf.ethz.ch

@spcl_eth

Register: basic memory object, can be shared or not
i.e., in this context register ≠ register of a CPU

Register r : operations r.read() and r.write(v)

Atomic Register:

 An invocation J of r.read or r.write takes effect at a single point 𝝉(𝑱) in time

 𝝉(𝑱) always lies between start and end of the operation J

 Two operations J and K on the same register always have a different effect time 𝝉(𝑱) ≠ 𝝉(𝑲)

 An invocation J of r.read() returns the value v written by the invocation K of r.write(v) with closest
preceding effect time 𝝉(𝑲)

Atomic register

25

spcl.inf.ethz.ch

@spcl_eth

Example

A

r.read()

B

r.write(4)

time

r.write(8)

r.read()

C
r.write(1) r.read()

𝝉 𝑱 𝝉 𝑲 𝝉 𝑴 𝝉 𝑵 𝝉 𝑳 𝝉 𝑶

K M

J

L

N

O
1

8

4

26

spcl.inf.ethz.ch

@spcl_eth

Assumptions for Atomic Registers justify to treat operations on them as events taking place at a single point
in time.

Will use this in the following proofs.

Note that even with atomic registers there can still be non-determinism of programs because nothing is said
about the order of effect times for concurrent operations.

Atomic register

27

spcl.inf.ethz.ch

@spcl_eth

By contradiction: assume concurrent CSP and CSQ [A]

Assume without loss of generality:

WQ(victim=Q) → WP(victim=P) [B]

From the code:

WP(flag[P]=true) → WP(victim = P) → RP(flag[Q]) → RP(victim) → CSP

WQ(flag[Q]=true) → WQ(victim = Q) → RQ(flag[P]) → RQ(victim) → CSQ

Proof: Mutual exclusion (Peterson)
flag[P] = true

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

B ⇒ must read P [C]A + C⇒ must read false

"write of P"

"read of Q"

transitivity of "→ "
⇒ must read true

28

spcl.inf.ethz.ch

@spcl_eth

By (exhaustive) contradition

Assume without loss of generality that P runs forever in its lock loop, waiting until flag[Q]==false or
victim != P.

Possibilities for Q:

stuck in nonCS

⇒ flag[Q] = false and P can continue. Contradiction.

repeatedly entering and leaving its CS

⇒ sets victim to Q when entering.

Now victim cannot be changed ⇒ P can continue. Contradiction.

stuck in its lock loop waiting until flag[P]==false or victim != Q.

But victim == P and victim == Q cannot hold at the same time. Contradiction.

Proof: Freedom from starvation
flag[P] = true

victim = P

while (flag[Q] && victim == P){}

CSP

flag[P] = false

29

spcl.inf.ethz.ch

@spcl_eth

class PetersonLock

{

volatile boolean flag[] = new boolean[2];

volatile int victim;

public void Acquire(int id)

{

flag[id] = true;

victim = id;

while (flag[1-id] && victim == id);

}

public void Release(int id)

{

flag[id] = false;

}

}

Peterson in Java

Volatile reference to an array and not an
array of volatile variables!

This example may work in practice.
However, for production programs it is

recommended to use Java’s
AtomicInteger and AtomicIntegerArray.

30

spcl.inf.ethz.ch

@spcl_eth

Extension of Peterson's lock to n processes

Every thread t knows his level in the filter level[t]

In order to enter CS, a thread has to elevate all levels.

For each level, we use Peterson’s mechanism to filter
at most one thread, if other threads are at higher level.

For every level l there is one victim victim[l]
that has to let others pass in case of conflicts.

31

The Filter Lock

spcl.inf.ethz.ch

@spcl_eth

int[] level(#threads), int[] victim(#threads)

lock(me) {
for (int i=1; i<n; ++i) {

level[me] = i;
victim[i] = me;
while (∃k ≠ me: level[k] >= i && victim[i] == me) {};

}
}

unlock(me) {
level[me] = 0;

}

32

The Filter Lock

Other threads
are at same or
higher level

And I have to wait

non-CS with n threads

n-1 threads

n-2 threads

2 threads

CS

...

1

2

n

0

spcl.inf.ethz.ch

@spcl_eth

import java.util.concurrent.atomic.AtomicIntegerArray;

class FilterLock{

AtomicIntegerArray level;

AtomicIntegerArray victim;

volatile int n;

FilterLock(int n) {

this.n = n;

level = new AtomicIntegerArray(n);

victim = new AtomicIntegerArray(n);

}

...

33

FilterLock in Java

spcl.inf.ethz.ch

@spcl_eth

...

// ∃k ≠ me: level[k] >= i (lev)

boolean Others(int me, int lev) {

for (int k = 0; k < n; ++k)

if (k != me && level.get(k) >= lev) return true;

return false;

}

public void Acquire(int me) {

for (int lev = 1; lev < n; ++lev) {

level.set(me, lev);

victim.set(lev, me);

while(me == victim.get(lev) && Others(me,lev));

}

}

public void Release(int me) {

level.set(me, 0);

}

}
34

FilterLock in Java

Again: I (as a thread) can make progress if
(a) Another thread wants to enter my level or
(b) No more threads are in front of me
This works because there are at most n
threads in the system.

spcl.inf.ethz.ch

@spcl_eth

Divide lock implementation (preprotocol) into two parts

 doorway interval 𝐷: finite number of steps

 waiting interval 𝑊: unbounded number of steps

A lock algorithm is first-come-first-served when for two processes A and B it holds that

If 𝐷𝐴
𝑗
→ 𝐷𝐵

𝑘 then 𝐶𝑆𝐴
𝑗
→ 𝐶𝑆𝐵

𝑘

35

Fairness

spcl.inf.ethz.ch

@spcl_eth

satisfies mutual exclusion

is deadlock free (how to prove?)

is starvation free (how to prove?)

but: is it also fair?

no: the filter lock is not first-come-first-serve

What else is bad about this lock?

36

The Filter Lock
non-CS with n threads

n-1 threads

n-2 threads

2 threads

CS

...

1

2

n

0

spcl.inf.ethz.ch

@spcl_eth

Question:

 Is it possible to construct mutual exclusion with non-atomic registers?

Surprisingly: yes

 It is possible with registers fulfilling the weakest possible conditions that appear to be still useful in a
concurrent setup.

37

A small detour: Safe and Regular Registers

spcl.inf.ethz.ch

@spcl_eth

Register r: basic memory object, can be shared or not,
operations r.read() and r.write(v).

SWMR (Single Writer Multiple Reader): only one concurrent write but multiple concurrent reads allowed.

Safe Register

 any read not concurrent with a write returns the current value of r

 any read concurrent with a write can return any value of the domain of r
if any read concurrent with writes can only return a value of one of the values (previous, new) then the
register is called regular

38

Safe SWMR Register

The notion "safe" is historically motivated but actually misleading.

spcl.inf.ethz.ch

@spcl_eth

39

Example

A

r.read()

B

r.write(4)

time

r.read()

C
r.write(1) r.read()

1

any value!

4

r.read()1

spcl.inf.ethz.ch

@spcl_eth

A process is required to take a numbered ticket

with value greater than all outstanding tickets

CS Entry: Wait until ticket number is lowest

40

Mutual Exclusion for n processes: Bakery Algorithm (1974)

Lamport, Turing award 2013

spcl.inf.ethz.ch

@spcl_eth

Process P

loop

non-critical section

np = nq + 1

while (nq != 0 && nq < np);

critical section

np = 0

41

Bakery algorithm (two processes, simplified)

Process Q

loop

non-critical section

nq = np + 1

while (np != 0 && np <= nq)

critical section

nq = 0

volatile int np = 0, nq = 0

np == nq can happen
 global ordering of

processes

Q also wants access

and Q has an earlier ticket

spcl.inf.ethz.ch

@spcl_eth

lock(me):

flag[me] = true;

label[me] = max(label[0], ... , label[n-1]) + 1;

while (∃k ≠ me: flag[k] && (k,label[k]) <l (me,label[me])) {};

unlock(me):

flag[me] = false;

42

Bakery algorithm (n processes)

integer array[0..n-1] label = [0,...,0]

boolean array[0..n-1] flag = [false, ..., false]

𝑘, 𝑙𝑘 <l 𝑗, 𝑙𝑗 ⇔ 𝑙𝑘 < 𝑙𝑗 or (𝑙𝑘 = 𝑙𝑗 and 𝑘 < 𝑗)

SWMR «I want the lock»

SWMR «ticket number»

spcl.inf.ethz.ch

@spcl_eth

class BakeryLock
{

AtomicIntegerArray flag; // there is no
AtomicBooleanArray

AtomicIntegerArray label;
final int n;

BakeryLock(int n) {
this.n = n;
flag = new AtomicIntegerArray(n);
label = new AtomicIntegerArray(n);

}

int MaxLabel() {
int max = label.get(0);
for (int i = 1; i<n; ++i)

max = Math.max(max, label.get(i));
return max;

}
...

43

Bakery Lock in Java

boolean Conflict(int me) {
for (int i = 0; i < n; ++i)

if (i != me && flag.get(i) != 0) {
int diff = label.get(i) - label.get(me);
if (diff < 0 || diff == 0 && i < me)

return true;
}

return false;
}

public void Acquire(int me) {
flag.set(me,1);
label.set(me, MaxLabel() + 1);
while(Conflict(me));

}

public void Release(int me) {
flag.set(me, 0);

}
}

spcl.inf.ethz.ch

@spcl_eth

Shared memory locations come in different variants

• Multi-Reader-Single-Writer (flag[])

• Multi-Reader-Multi-Writer (victim[])

 Theorem 5.1 in [1]: “If S is a [atomic] read/write
system with at least two processes and S solves
mutual exclusion with global progress
[deadlock-freedom], then S must have at least
as many variables as processes”

47

In general

[1]:

I and 10,000,000 threads!

spcl.inf.ethz.ch

@spcl_eth

… that may not quite fulfil its purpose!

AND we cannot do better, can we?

 Is mutual exclusion really implemented like this?

 NO! Why?

- space lower bound linear in the number of maximum threads!

- without precautions (volatile variables) our assumptions on
memory reordering does not hold. Memory barriers in
hardware are expensive.

- algorithms are not wait-free (more later)

- modern multiprocessor architectures provide special instructions
for atomically reading and writing at once!

 But we proved that we cannot do better. What now!?

 Change (extend) the model with architecture engineering!
48

We have constructed something …

spcl.inf.ethz.ch

@spcl_eth

49

Hardware Support for Parallelism
Read-Modify-Write Operations

spcl.inf.ethz.ch

@spcl_eth

50

Hardware support for atomic operations: Example (x86)

CMPXCHG mem, reg
«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the
second operand to the first operand
and sets the ZF flag in the flag
registers to 1. Otherwise it copies
the value in the first operand to the
A register and clears ZF flag to 0»

«The LOCK prefix causes certain
kinds of memory read-modify-write
instructions to occur atomically»

From the AMD64 Architecture
Programmer’s Manual

R. Hudson: IA memory ordering: https://www.youtube.com/watch?v=WUfvvFD5tAA (2008)

https://www.youtube.com/watch?v=WUfvvFD5tAA

spcl.inf.ethz.ch

@spcl_eth

51

Hardware support for atomic operations: Example (ARM)

LDREX <rd>, <rn>
«Loads a register from memory and
if the address has the shared
memory attribute, mark the physical
address as exclusive access for the
executing processor in a shared
monitor»

STREX <rd>, <rm>, <rn>
«performs a conditional store to
memory. The store only occurs if the
executing processor has exclusive
access to the memory addressed»

From the ARM Architecture
Reference Manual

spcl.inf.ethz.ch

@spcl_eth

Typical instructions

Test-And-Set (TAS)

Example TSL register, flag (Motorola 68000)

Compare-And-Swap (CAS)

Example: LOCK CMPXCHG (Intel x86)

Example: CASA (Sparc)

Load Linked / Store Conditional

Example LDREX/STREX (ARM)

Example LL / SC (MIPS, POWER, RISC V)

52

Hardware support for atomic operations

Atomic instructions are typically

much slower than simple read

& write operations [1]!

[1]: H. Schweizer, M. Besta, T. Hoefler: Evaluating the Cost of Atomic Operations on Modern Architectures, ACM PACT’15

spcl.inf.ethz.ch

@spcl_eth

boolean TAS(memref s)

if (mem[s] == 0) {
mem[s] = 1;
return true;

} else

return false;

53

Semantics

int CAS (memref a, int old, int new)

oldval = mem[a];

if (old == oldval)

mem[a] = new;

return oldval;

at
o

m
ic

at
o

m
ic

spcl.inf.ethz.ch

@spcl_eth

are Read-Modify-Write operations

enable implementation of a mutex with O(1) space
(in contrast to Filter lock, Bakery lock etc.)

are needed for lock-free programming (later in this course)

54

TAS and CAS

spcl.inf.ethz.ch

@spcl_eth

55

Implementation of a spinlock using simple atomic operations

Init (lock)

lock = 0;

Acquire (lock)

while !TAS(lock); // wait

Release (lock)

lock = 0;

Test and Set (TAS) Compare and Swap (CAS)

Init (lock)

lock = 0;

Acquire (lock)

while (CAS(lock, 0, 1) != 0);

Release (lock)

CAS(lock, 1, 0);

ignore result

spcl.inf.ethz.ch

@spcl_eth

56

Read-Modify-Write in Java

spcl.inf.ethz.ch

@spcl_eth

Need support for atomic operations on a high level.

Available in Java (from JDK 5) with class

java.util.concurrent.atomic.AtomicBoolean

Operations

boolean set();

boolean get();

boolean compareAndSet(boolean expect, boolean update);

boolean getAndSet(boolean newValue);

57

Let's try it.

atomically set to value update iff

current value is expect. Return

true on success.

sets newValue and returns

previous value.

spcl.inf.ethz.ch

@spcl_eth

 The JVM bytecode does not offer atomic operations like CAS.
[It does, however, support monitors via instructions monitorenter, monitorexit, we will understand this
later]

 But there is a (yet undocumented) class sun.misc.Unsafe offering direct mappings from java to
underlying machine / OS.

 Direct mapping to hardware is not guaranteed –
operations on AtomicBoolean are not guaranteed lock-free

58

How does this work?

spcl.inf.ethz.ch

@spcl_eth

(source: grepcode.com)

59

Java.util.concurrent.atomic.AtomicInteger

...

spcl.inf.ethz.ch

@spcl_eth

public class TASLock implements Lock {

AtomicBoolean state = new AtomicBoolean(false);

public void lock() {

while(state.getAndSet(true)) {}

}

public void unlock() {

state.set(false);

}

...

}

60

TASLock in Java

Spinlock:

Try to get the lock.

Keep trying until the lock is acquired
(return value is false).

unlock
release the lock (set to false)

spcl.inf.ethz.ch

@spcl_eth

TAS

n = 1, elapsed= 224, normalized= 224

n = 2, elapsed= 719, normalized= 359

n = 3, elapsed= 1914, normalized= 638

n = 4, elapsed= 3373, normalized= 843

n = 5, elapsed= 4330, normalized= 866

n = 6, elapsed= 6075, normalized= 1012

n = 7, elapsed= 8089, normalized= 1155

n = 8, elapsed= 10369, normalized= 1296

n = 16, elapsed= 41051, normalized= 2565

n = 32, elapsed= 156207, normalized= 4881

n = 64, elapsed= 619197, normalized= 9674

61

Measurement
 run n threads

 each thread acquires and releases
the TASLock a million times

 repeat scenario ten times and add
up runtime

 record time per thread

Intel core i7@3.4 GHz, 4 cores + HT

spcl.inf.ethz.ch

@spcl_eth

sequential bottleneck

contention: threads fight for the bus
during call of getAndSet()

cache coherency protocol invalidates
cached copies of the lock on other
processors

62

Why?

Bus

cache

memory

cachecache

spcl.inf.ethz.ch

@spcl_eth

public void lock()

{

do

while(state.get()) {}

while (!state.compareAndSet(false, true));

}

public void unlock()

{

state.set(false);

}

63

Test-and-Test-and-Set (TATAS) Lock

spcl.inf.ethz.ch

@spcl_eth

64

Measurement

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

TAS

TTAS

number threads

ms/
thread

note that this varies
strongly between
machines and JVM
implementations and
even between runs.
Take it as a qualitative
statement

spcl.inf.ethz.ch

@spcl_eth

65

TATAS does not generalize

 Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

spcl.inf.ethz.ch

@spcl_eth

Observation

 (too) many threads fight for access to the same resource

 slows down progress globally and locally

Solution

 threads go to sleep with random duration

 increase expected duration each time the resource is not free

66

TATAS with backoff

spcl.inf.ethz.ch

@spcl_eth

public void lock() {

Backoff backoff = null;

while (true) {

while (state.get()) {}; // spin reading only (TTAS)

if (!state.getAndSet(true)) // try to acquire, returns previous val

return;

else { // backoff on failure

try {

if (backoff == null) // allocation only on demand

backoff = new Backoff(MIN_DELAY, MAX_DELAY);

backoff.backoff();

} catch (InterruptedException ex) {}

}

}

}
67

Lock with Backoff

spcl.inf.ethz.ch

@spcl_eth

class Backoff

{...

public void backoff() throws InterruptedException {

int delay = random.nextInt(limit);

if (limit < maxDelay) { // double limit if less than max

limit = 2 * limit;

}

Thread.sleep(delay);

}

}

68

exponential backoff

spcl.inf.ethz.ch

@spcl_eth

69

Measurement

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

TAS

TTAS

BackoffLock

number threads

ms/

thread

yeah!

spcl.inf.ethz.ch

@spcl_eth

 Implementation of spinlocks in software.

 Spinlocks vs. scheduled locks.

 Atomic operations in hardware and Java.

 Next time: higher level abstractions: monitors / semaphores etc.

70

Summary

