
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming, Spring 2019, Lecture 16+1:

Spinlocks, Deadlocks, Semaphores

200 Pflop/s peak #1 top500
57 Pflop/s real app
27,360 V100 GPUs

What we did this weekend ☺
(the weather was bad anyway)

spcl.inf.ethz.ch

@spcl_eth

▪ So far:
▪ Bad interleavings and data races and why they happen

▪ Memory ordering and how we formalize it to drive proofs

▪ Implementation of locks using atomic or safe registers (Peterson + Filter lock)

▪ Now:
▪ Multi-process locks (using SWMR registers)

▪ Implementation of locks with Read-Modify-Write operations

▪ Concurrency on a higher level: Deadlocks, Semaphores, Barriers

▪ Learning goals:
▪ Understand pitfalls in very simple synchronization algorithms

▪ This is very important to design correct parallel codes

2

Outline

spcl.inf.ethz.ch

@spcl_eth

A process is required to take a numbered ticket

with value greater than all outstanding tickets

CS Entry: Wait until ticket number is lowest

3

Mutual Exclusion for n processes: Bakery Algorithm (1974)

Lamport, Turing award 2013

spcl.inf.ethz.ch

@spcl_eth

Process P

loop

non-critical section

np = nq + 1

while (nq != 0 && nq < np);

critical section

np = 0

4

Bakery algorithm (two processes, simplified)

Process Q

loop

non-critical section

nq = np + 1

while (np != 0 && np <= nq)

critical section

nq = 0

volatile int np = 0, nq = 0

np == nq can happen
➔ global ordering of

processes

Q also wants access

and Q has an earlier ticket

spcl.inf.ethz.ch

@spcl_eth

lock(me):

flag[me] = true;

label[me] = max(label[0], ... , label[n-1]) + 1;

while (∃k ≠ me: flag[k] && (k,label[k]) <l (me,label[me])) {};

unlock(me):

flag[me] = false;

5

Bakery algorithm (n processes)

integer array[0..n-1] label = [0, ..., 0]

boolean array[0..n-1] flag = [false, ..., false]

𝑘, 𝑙𝑘 <l 𝑗, 𝑙𝑗 ⇔ 𝑙𝑘 < 𝑙𝑗 or (𝑙𝑘 = 𝑙𝑗 and 𝑘 < 𝑗)

SWMR «I want the lock»

SWMR «ticket number»

spcl.inf.ethz.ch

@spcl_eth

class BakeryLock
{

AtomicIntegerArray flag; // there is no
AtomicBooleanArray

AtomicIntegerArray label;
final int n;

BakeryLock(int n) {
this.n = n;
flag = new AtomicIntegerArray(n);
label = new AtomicIntegerArray(n);

}

int MaxLabel() {
int max = label.get(0);
for (int i = 1; i<n; ++i)

max = Math.max(max, label.get(i));
return max;

}
...

6

Bakery Lock in Java

boolean Conflict(int me) {
for (int i = 0; i < n; ++i)

if (i != me && flag.get(i) != 0) {
int diff = label.get(i) - label.get(me);
if (diff < 0 || diff == 0 && i < me)

return true;
}

return false;
}

public void Acquire(int me) {
flag.set(me, 1);
label.set(me, MaxLabel() + 1);
while(Conflict(me));

}

public void Release(int me) {
flag.set(me, 0);

}
}

spcl.inf.ethz.ch

@spcl_eth

Shared memory locations (atomic registers) come in different variants

• Multi-Reader-Single-Writer (flag[], label[] in Bakery)

• Multi-Reader-Multi-Writer (victim in Peterson)

▪ Theorem 5.1 in [1]: “If S is a [atomic] read/write
system with at least two processes and S solves
mutual exclusion with global progress
[deadlock-freedom], then S must have at least
as many variables as processes”

7

In general

[1]:

I and 10,000,000 threads!

spcl.inf.ethz.ch

@spcl_eth

… that may not quite fulfil its purpose!

AND we cannot do better, can we?

▪ Is mutual exclusion really implemented like this?

▪ NO! Why?

- space lower bound linear in the number of maximum threads!

- without precautions (volatile variables) our assumptions on
memory reordering does not hold. Memory barriers in
hardware are expensive.

- algorithms are not wait-free (more later)

▪ But we proved that we cannot do better. What now!?

▪ Change (extend) the model with architecture engineering!

- modern multiprocessor architectures provide special instructions
for atomically reading and writing at once!

8

We have constructed something …

spcl.inf.ethz.ch

@spcl_eth

9

Hardware Support for Parallelism
Read-Modify-Write Operations

spcl.inf.ethz.ch

@spcl_eth

10

Hardware support for atomic operations: Example (x86)

CMPXCHG mem, reg
«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the
second operand to the first operand
and sets the ZF flag in the flag
registers to 1. Otherwise it copies
the value in the first operand to the
A register and clears ZF flag to 0»

«The LOCK prefix causes certain
kinds of memory read-modify-write
instructions to occur atomically»

From the AMD64 Architecture
Programmer’s Manual

R. Hudson: IA memory ordering: https://www.youtube.com/watch?v=WUfvvFD5tAA (2008)

https://www.youtube.com/watch?v=WUfvvFD5tAA

spcl.inf.ethz.ch

@spcl_eth

11

Hardware support for atomic operations: Example (ARM)

LDREX <rd>, <rn>
«Loads a register from memory and
if the address has the shared
memory attribute, mark the physical
address as exclusive access for the
executing processor in a shared
monitor»

STREX <rd>, <rm>, <rn>
«performs a conditional store to
memory. The store only occurs if the
executing processor has exclusive
access to the memory addressed»

From the ARM Architecture
Reference Manual

spcl.inf.ethz.ch

@spcl_eth

Typical instructions

Test-And-Set (TAS)
Example TSL register, flag (Motorola 68000)

Compare-And-Swap (CAS)
Example: LOCK CMPXCHG (Intel x86)

Example: CASA (Sparc)

Load Linked / Store Conditional
Example LDREX/STREX (ARM)

Example LL / SC (MIPS, POWER, RISC V)

12

Hardware support for atomic operations

Atomic instructions are typically
much slower than simple read &
write operations [1]!

[1]: H. Schweizer, M. Besta, T. Hoefler: Evaluating the Cost of Atomic Operations on Modern Architectures, ACM PACT’15

spcl.inf.ethz.ch

@spcl_eth

boolean TAS(memref s)

if (mem[s] == 0) {
mem[s] = 1;
return true;

} else

return false;

13

Semantics of TAS and CAS

int CAS (memref a, int old, int new)

oldval = mem[a];

if (old == oldval)

mem[a] = new;

return oldval;

at
o

m
ic

at
o

m
ic

▪ are Read-Modify-Write («atomic») operations

▪ enable implementation of a mutex with O(1) space
(in contrast to Filter lock, Bakery lock etc.)

▪ are needed for lock-free programming (later in this course)

spcl.inf.ethz.ch

@spcl_eth

14

Implementation of a spinlock using simple atomic operations

Init (lock)
lock = 0;

Acquire (lock)
while !TAS(lock); // wait

Release (lock)
lock = 0;

Test and Set (TAS) Compare and Swap (CAS)

Init (lock)
lock = 0;

Acquire (lock)
while (CAS(lock, 0, 1) != 0);

Release (lock)
CAS(lock, 1, 0);

ignore result

spcl.inf.ethz.ch

@spcl_eth

15

Read-Modify-Write in Java

spcl.inf.ethz.ch

@spcl_eth

Need support for atomic operations on a high level.

Available in Java (from JDK 5) with class
java.util.concurrent.atomic.AtomicBoolean

Operations
boolean set();

boolean get();

boolean compareAndSet(boolean expect, boolean update);

boolean getAndSet(boolean newValue);

16

Let's try it.

atomically set to value update iff
current value is expect. Return true
on success.

sets newValue and returns previous
value.

spcl.inf.ethz.ch

@spcl_eth

▪ The JVM bytecode does not offer atomic operations like CAS.
[It does, however, support monitors via instructions monitorenter,
monitorexit, we will understand this later]

▪ But there is a (yet undocumented) class sun.misc.Unsafe offering direct
mappings from java to underlying machine / OS.

▪ Direct mapping to hardware is not guaranteed –
operations on AtomicBoolean are not guaranteed lock-free

17

How does this work?

spcl.inf.ethz.ch

@spcl_eth

(source: grepcode.com)

18

Java.util.concurrent.atomic.AtomicInteger

...

spcl.inf.ethz.ch

@spcl_eth

public class TASLock implements Lock {

AtomicBoolean state = new AtomicBoolean(false);

public void lock() {

while(state.getAndSet(true)) {}

}

public void unlock() {

state.set(false);

}

...

}

19

TASLock in Java
Spinlock:

Try to get the lock.

Keep trying until the lock is
acquired (return value is false).

unlock
release the lock (set to false)

spcl.inf.ethz.ch

@spcl_eth

TAS
n = 1, elapsed= 224, normalized= 224
n = 2, elapsed= 719, normalized= 359
n = 3, elapsed= 1914, normalized= 638
n = 4, elapsed= 3373, normalized= 843
n = 5, elapsed= 4330, normalized= 866
n = 6, elapsed= 6075, normalized= 1012
n = 7, elapsed= 8089, normalized= 1155
n = 8, elapsed= 10369, normalized= 1296
n = 16, elapsed= 41051, normalized= 2565
n = 32, elapsed= 156207, normalized= 4881
n = 64, elapsed= 619197, normalized= 9674

20

Simple TAS Spin Lock – Measurement Results

▪ run n threads

▪ each thread acquires and releases
the TASLock a million times

▪ repeat scenario ten times and add
up runtime

▪ record time per thread

Intel core i7@3.4 GHz, 4 cores + HT

spcl.inf.ethz.ch

@spcl_eth

sequential bottleneck

contention: threads fight
for the bus during call of
getAndSet()

cache coherency protocol
invalidates cached copies
of the lock variable on
other processors

21

Why?

Bus

cache

memory

cachecache

spcl.inf.ethz.ch

@spcl_eth

public void lock()

{

do

while(state.get()) {}

while (!state.compareAndSet(false, true));

}

public void unlock()

{

state.set(false);

}

22

Test-and-Test-and-Set (TATAS) Lock

spcl.inf.ethz.ch

@spcl_eth

23

Measurement

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

TAS

TTAS

number threads

ms/
thread

note that this varies
strongly between
machines and JVM
implementations and
even between runs.
Take it as a qualitative
statement

spcl.inf.ethz.ch

@spcl_eth

24

TATAS does not generalize

▪ Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

spcl.inf.ethz.ch

@spcl_eth

Observation

▪ (too) many threads fight for access to the same resource

▪ slows down progress globally and locally

Solution

▪ threads go to sleep with random duration

▪ increase expected duration each time the resource is not free

25

TATAS with backoff

☺

☺

spcl.inf.ethz.ch

@spcl_eth

public void lock() {

Backoff backoff = null;

while (true) {

while (state.get()) {}; // spin reading only (TTAS)

if (!state.getAndSet(true)) // try to acquire, returns previous val

return;

else { // backoff on failure

try {

if (backoff == null) // allocation only on demand

backoff = new Backoff(MIN_DELAY, MAX_DELAY);

backoff.backoff();

} catch (InterruptedException ex) {}

}

}

}
26

Lock with Backoff

spcl.inf.ethz.ch

@spcl_eth

class Backoff

{...

public void backoff() throws InterruptedException {

int delay = random.nextInt(limit);

if (limit < maxDelay) { // double limit if less than max

limit = 2 * limit;

}

Thread.sleep(delay);

}

}

27

exponential backoff

spcl.inf.ethz.ch

@spcl_eth

28

Measurement

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

TAS

TTAS

BackoffLock

number threads

ms/
thread

yeah!

spcl.inf.ethz.ch

@spcl_eth

Deadlock

29

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {
…
synchronized void withdraw(int amount) {…}
synchronized void deposit(int amount) {…}

synchronized void transferTo(int amount, BankAccount a) {
this.withdraw(amount);
a.deposit(amount);

}
}

30

Deadlocks – Motivation

Thread aquires second lock in a.deposit.
Can this become a problem?

Consider a method to transfer money between bank accounts

spcl.inf.ethz.ch

@spcl_eth

Suppose x and y are instances of class BankAccount

31

Deadlocks – Motivation

acquire lock for x
withdraw from x

acquire lock for y

acquire lock for y
withdraw from y

acquire lock for x

Thread 1: x.transferTo(1,y)

Ti
m

e

Thread 2: y.transferTo(1,x)

x
y

class BankAccount {
…
synchronized void withdraw(int amount) {…}
synchronized void deposit(int amount) {…}

synchronized void transferTo(int amount, BankAccount a) {
this.withdraw(amount);
a.deposit(amount);

}
}

spcl.inf.ethz.ch

@spcl_eth

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.

32

Deadlocks

spcl.inf.ethz.ch

@spcl_eth

Graphically: Threads and Resources (Locks)

Thread P attempts to acquire resource a:

Resource b is held by thread Q:

33

Threads and Resources

x

P a

A

b Q

spcl.inf.ethz.ch

@spcl_eth

A deadlock for threads 𝑇1…𝑇𝑛 occurs when the directed graph describing the
relation of 𝑇1…𝑇𝑛 and resources 𝑅1…𝑅𝑚 contains a cycle.

34

Deadlocks – more formally

T1

R3 T2

T4

T3

R4
R2R1

T2 has R3T1 wants R3

spcl.inf.ethz.ch

@spcl_eth

Deadlock detection in systems is implemented by finding cycles in the
dependency graph.

• Deadlocks can, in general, not be healed. Releasing locks generally leads to
inconsistent state.

Deadlock avoidance amounts to techniques to ensure a cycle can never arise

• two-phase locking with retry (release when failed)
• Usually in databases where transactions can be aborted without consequence

• resource ordering
• Usually in parallel programming where global state is modified

35

Techniques

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {

...

synchronized void withdraw(int amount) {…}

synchronized void deposit(int amount) {…}

...

synchronized void transferTo(int amount, BankAccount a) {

this.withdraw(amount);

a.deposit(amount);

}

}

36

Back to our example: what can we do?

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {

...

synchronized void withdraw(int amount) {…}

synchronized void deposit(int amount) {…}

...

void transferTo(int amount, BankAccount a) {

this.withdraw(amount);

a.deposit(amount);

}

}

37

Option 1: non-overlapping (smaller) critical sections

Money disappears for a (very short?) moment!
Can we allow such transient inconsistencies?
Very often unacceptable!

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {
static Object globalLock = new Object();
// withdraw and deposit protected with globalLock!

void withdraw(int amount) {…}

void deposit(int amount) {…}
...
void transferTo(int amount, BankAccount to) {

synchronized (globalLock) {
withdraw(amount);
to.deposit(amount);

}
}

}

38

Option 2: one lock for all

deadlock avoided but no concurrent
transfer possible, even not when the
pairs of accounts are disjoint.
Often very inefficient!

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {
...
void transferTo(int amount, BankAccount to) {

if (to.accountNr < this.accountNr)
synchronized(this){

synchronized(to) {
withdraw(amount);
to.deposit(amount);

}}
else

synchronized(to){
synchronized(this) {

withdraw(amount);
to.deposit(amount);

}}
}

}
39

Option 3: global ordering of resources

Unique global ordering required.
Whole program has to obey this order to
avoid cycles.
Code taking only one lock can ignore it.

spcl.inf.ethz.ch

@spcl_eth

40

Ordering of resources

P

a

Q

b

1

2

spcl.inf.ethz.ch

@spcl_eth

class BankAccount {

private static final AtomicLong counter = new AtomicLong();

private final long index = counter.incrementAndGet();

...

void transferTo(int amount, BankAccount to) {

if (to.index < this.index)

...

}

}

41

Programming trick

No globally unique order available? Generate it:

spcl.inf.ethz.ch

@spcl_eth

42

Another (historic) example: from the Java standard library

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0, len, this.value, this.count);

}

synchronized getChars(int x, int y, char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

Do you find the two
problems?

spcl.inf.ethz.ch

@spcl_eth

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0, len, this.value, this.count);

}

synchronized getChars(int x, int y, char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

43

Another (historic) example: from the Java standard library
Problem #1:

▪ Lock for sb is not held between calls
to sb.length and sb.getChars

▪ sb could get longer

▪ Would cause append to not append
whole string
▪ The semantics here can be discussed!

Definitely an issue if sb got shorther☺

Problem #2:

▪ Deadlock potential if two threads try
to append “crossing” StringBuffers, just
like in the bank-account first example

▪ x.append(y); y.append(x);Do you find the two
problems?

Amy Williams, William Thies, and Michael D. Ernst: Static Deadlock Detection for Java Libraries, ECOOP’05 (for deadlock)

spcl.inf.ethz.ch

@spcl_eth

▪ Not easy to fix both problems without extra overheads:
▪ Do not want unique ids on every StringBuffer

▪ Do not want one lock for all StringBuffer objects

▪ Actual Java library: initially fixed neither (left code as is; changed javadoc)
▪ Up to clients to avoid such situations with own protocols

▪ Today: two classes StringBuffer (claimed to be synchronized) and
StringBuilder (not synchronized)

44

Fix?

spcl.inf.ethz.ch

@spcl_eth

Code like account-transfer and string-buffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects
▪ Can document a fixed order among types
▪ Example: “When moving an item from the hashtable to the work queue, never try to

acquire the queue lock while holding the hashtable lock”

2. Easier case: objects are in an acyclic structure
▪ Can use the data structure to determine a fixed order
▪ Example: “If holding a tree node’s lock, do not acquire other tree nodes’ locks unless

they are children in the tree”

45

Perspective

spcl.inf.ethz.ch

@spcl_eth

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But the Deadlock is the dominant problem of reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvation denotes the repeated but unsuccesful attempt of a recently
unblocked process to continue its execution.

46

Significance of Deadlocks

spcl.inf.ethz.ch

@spcl_eth

Semaphores

47

spcl.inf.ethz.ch

@spcl_eth

• Locks provide means to enforce atomicity via mutual exclusion

• They lack the means for threads to communicate about changes
▪ e.g., changes in the state

• Thus, they provide no order and are hard to use
▪ e.g., if threads A and B lock object X, it is not determined who comes first

• Example: producer / consumer queues

48

Why do we need more than locks?

spcl.inf.ethz.ch

@spcl_eth

Semaphore Edsger W. Dijkstra 1965

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

Se|ma|phor, das od. der; -s, -e [zu griech. σεμα = Zeichen u. φoρos = tragend]:
Signalmast mit beweglichen Flügeln.

49

spcl.inf.ethz.ch

@spcl_eth

Semaphore: integer-valued abstract data type S with some initial value s≥0 and
the following operations*

acquire(S)
{

wait until S > 0
dec(S)

}

release(S)
{

inc(S)
}

50

Semaphore: Semantics

* Dijkstra called them P (probeeren), V (vrijgeven), also often used: wait and signal

acquire

release

(protected)

at
o

m
ic

at
o

m
ic

spcl.inf.ethz.ch

@spcl_eth

mutex = Semaphore(1);

lock mutex := mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := mutex.release()
one other thread will be let in

Semaphore number:
1 → unlocked

0 → locked

x>0 → x threads will be let into “critical section”

51

Building a lock with a semaphore

spcl.inf.ethz.ch

@spcl_eth

▪ Execute in parallel: x = (aT * d) * z
▪ a and d are column vectors

▪ x, z are scalar

▪ Assume each vector has 4 elements
▪ x = (a1*d1 + a2*d2 + a3*d3 + a4*d4) * z

▪ Parallelize on two processors (using two threads A and B)
▪ xA = a1*d1 + a2*d2

▪ xB = a3*d3 + a4*d4

▪ x = (xA + xB) * z

▪ Which synchronization is needed where?
▪ Using locks?

▪ Using semaphores?

52

Example: scaled dot product

spcl.inf.ethz.ch

@spcl_eth

▪ Two processes P and Q executing code.

▪ Rendezvouz: locations in code, where P and Q wait for the other
to arrive. Synchronize P and Q.

53

Rendezvous with Semaphores

P

Q

P

Q

How would you implement
this using Semaphores?

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

54

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous ? ?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

55

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
?

acquire(P_Arrived)
?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

56

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

Dou you find
the problem?

spcl.inf.ethz.ch

@spcl_eth

57

Deadlock

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

P_ArrivedQ_Arrived

owned byrequires

owned by requires

P

Q

spcl.inf.ethz.ch

@spcl_eth

58

Rendezvous with Semaphores
Wrong solution with Deadlock

pre

pre acquire

P

Q release

releaseacquire

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q_Arrived

59

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
acquire(Q_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

spcl.inf.ethz.ch

@spcl_eth

Consider a process list QS associated with semaphore S

acquire(S)
{if S > 0 then

dec(S)
else

put(QS, self)
block(self)

end }

release(S)
{if QS == Ø then

inc(S)
else

get(QS, p)
unblock(p)

end }

60

Implementing Semaphores without Spinning (blocking queues)

acquire

release

(protected)

10000S

QS

at
o

m
ic

at
o

m
ic

spcl.inf.ethz.ch

@spcl_eth

P first

Q first

61

Scheduling Scenarios

releasepre acquire post

pre acquire post

releasepre acquire post

releasepre acquire post

P

Q

P

Q

time

time

release

release signals (arrow)
acquire may wait (filled box)

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q_Arrived

62

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
acquire(Q_Arrived)

release(Q_Arrived)
acquire(P_Arrived)

post

spcl.inf.ethz.ch

@spcl_eth

P first

Q first

63

That’s even better.

releasepre acquire post

releasepre acquire post

releasepre acquire post

releasepre acquire post

P

Q

P

Q

release signals (arrow)
acquire may wait (filled box)

spcl.inf.ethz.ch

@spcl_eth

▪ Assume now vectors with 1 million entries on 10,000 threads
▪ Very common! (over the weekend, we ran 57 Pflop/s on 27,360 GPUs)

▪ How would you implement that?

▪ Semaphores, locks?

▪ Time for a higher-level abstraction!
▪ Supporting threads in bulk-mode

Move in lock-step

▪ And enabling a “bulk-synchronous parallel” (BSP) model
The full BSP is more complex (supports distributed memory)

64

Back to our dot-product

spcl.inf.ethz.ch

@spcl_eth

Barriers

65

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number of processes.

66

Barrier

How would you
implement this using
Semaphores?

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphore barrier. Integer count.

67

Barrier – 1st try

P1 P2 ... Pn

init barrier = 0; volatile count = 0

pre ...

barrier count++
if (count==n) release(barrier)
acquire(barrier)

post ...

Race Condition !

Some wait forever!

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphore barrier. Integer count.

68

Barrier

P1 P1 ... Pn

init barrier = 0; volatile count = 0

pre ...

barrier count++
if (count==n) release(barrier)
acquire(barrier)

post ...

Race Condition !

Deadlock !

Invariants
«Each of the processes eventually
reaches the acquire statement"

«The barrier will be opened if and
only if all processes have reached the
barrier"

«count provides the number of
processes that have passed the
barrier" (violated)

«when all processes have reached
the barrier then all waiting processes
can continue" (violated)

spcl.inf.ethz.ch

@spcl_eth

69

Recap: Race Condition

P
ro

cess P

P
ro

cess Q

x

read x

reg = x
reg = reg +1
x = reg

write x
write x

read x

Shared
Variable

Race Condition

reg = x
reg = reg -1
x = reg

x++ x--

spcl.inf.ethz.ch

@spcl_eth

70

With Mutual Exclusion

P
ro

cess P

P
ro

cess Q

x

read x

write x

write x

read x

Critical
Section

Critical
Section

reg = x
reg = reg +1
x = reg

reg = x
reg = reg -1
x = reg

x++

x--

Mutual
Exclusion

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphores barrier, mutex. Integer count.

71

Barrier

P1 P2 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)
acquire(barrier)
release(barrier)

post ...

turnstile

spcl.inf.ethz.ch

@spcl_eth

72

Reusable Barrier. 1st trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--

release(mutex)
if (count==0) acquire(barrier)

post ...

Race Condition !

Race Condition !

Dou you see
the problem?

spcl.inf.ethz.ch

@spcl_eth

73

Reusable Barrier. 1st trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--

release(mutex)
if (count==0) acquire(barrier)

post ...

Race Condition !

Race Condition !

Invariants

«Only when all processes have
reached the turnstyle it will be
opened the first time"

«When all processes have run
through the barrier then count = 0"

«When all processes have run
through the barrier then barrier = 0"
(violated)

spcl.inf.ethz.ch

@spcl_eth

74

Illustration of the problem: scheduling scenario

count++

count=3 → release(barrier)

count++

count=3 → release(barrier)

count++

(count=1)

barrier = 0

barrier = 2

barrier = 1

turnstile(barrier)

turnstile(barrier)

turnstile(barrier)

barrier = 2

spcl.inf.ethz.ch

@spcl_eth

75

Reusable Barrier. 2nd trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

barrier acquire(mutex)
count++
if (count==n) release(barrier)

release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
if (count==0) acquire(barrier)

release(mutex)

post ...

Process can pass
other processes!

Dou you see
the problem?

spcl.inf.ethz.ch

@spcl_eth

76

Reusable Barrier. 2nd trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

barrier acquire(mutex)
count++
if (count==n) release(barrier)

release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
if (count==0) acquire(barrier)

release(mutex)

post ...

Invariants

«When all processes have passed the
barrier, it holds that barrier = 0"

« Even when a single process has
passed the barrier, it holds that
barrier = 0» (violated)

spcl.inf.ethz.ch

@spcl_eth

77

Solution: Two-Phase Barrier

init mutex=1; barrier1=0; barrier2=1; count=0

barrier acquire(mutex)
count++;
if (count==n)

acquire(barrier2); release(barrier1)
release(mutex)

acquire(barrier1); release(barrier1);
// barrier1 = 1 for all processes, barrier2 = 0 for all processes
acquire(mutex)
count--;
if (count==0)

acquire(barrier1); release(barrier2)
signal(mutex)

acquire(barrier2); release(barrier2)
// barrier2 = 1 for all processes, barrier1 = 0 for all processes

Of course, this is very slow in practice, see http://www.spiral.net/software/barrier.html for a specialized fast barrier for x86!

http://www.spiral.net/software/barrier.html

spcl.inf.ethz.ch

@spcl_eth

▪ Semaphore, Rendevouz and Barrier:

▪ Concurrent programming is prone to errors in reasoning.

▪ A naive approach with trial and error is close-to impossible.

▪ Ways out:
▪ Identify invariants in the problem domain, ensure they hold for your implementation

▪ Identify and apply established patterns

▪ Use known good libraries (like in the Java API)

78

Lesson Learned ?

spcl.inf.ethz.ch

@spcl_eth

Locks are not enough: we need methods to wait for events / notifications

Semaphores

Rendezvous and Barriers

Next lecture:

Producer-Consumer Problem

Monitors and condition variables

79

Summary

