ETH:zurich S R v esien DINFK

TORSTEN HOEFLER

Parallel Programming, Spring 2019, Lecture 16+1:

-

\\
el |

....

Features:
-w<7nm
-h>40nm
-L<100 nm

(b) due to the large h/w
ratio, the z-direction can
be modeled as periodic
> and represented by
momentum points.

(c) Atomic structure of Si
channel (in red: atoms,
in black: bonds).

| (d) Atomically resolved
temperature within the
FinFET in (a-b), when a
gate-to-source and
drain-to-source voltage
| is applied.
Atom Temperature [K]

T ; 3 M

~.300 350 400

.K‘Z

: Figure 1: Simulation of self-heating effects in a 3-D Silicon
% FinFET with the OMEN code.

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Outline

= So far:
= Bad interleavings and data races and why they happen
= Memory ordering and how we formalize it to drive proofs
= Implementation of locks using atomic or safe registers (Peterson + Filter lock)

= Now:
= Multi-process locks (using SWMR registers)
=" |mplementation of locks with Read-Modify-Write operations
= Concurrency on a higher level: Deadlocks, Semaphores, Barriers

= Learning goals:
= Understand pitfalls in very simple synchronization algorithms
= This is very important to design correct parallel codes

spcl.inf.ethz.ch

Yy @spcl_eth

Mutual Exclusion for n processes: Bakery Algorithm (1974)

A process is required to take a numbered ticket
with value greater than all outstanding tickets

CS Entry: Wait until ticket number is lowest -

Lamport, Turing award 2013

=

PLEASE
Take A

Number

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Bakery algorithm (two processes, simplified)

volatile int np = @0, nq = ©

Process P Process Q
loop loop
non-critical section Y ————— non-critical section
np=nq+1 ng=np+1
while (ng =0 && nqg < np); while (np =0 && np <=nq)
critical section critical section
no =0 ng =0 np == ng can happen
P and Q has an earlier ticket G =>» global ordering of

processes

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Bakery algorithm (n processes)

integer array[0..n-1] label = [0, ..., O]
boolean array[0..n-1] flag = [false, ..., false]

SWMR «ticket number»

SWMR «l want the lock»

lock(me):
flag[me] = true;
label[me] = max(label[©], ... , label[n-1]) + 1;
while (3k #me: flag[k] && (k,label[k]) < (me,1abel[me])) {};

unlock(me):

flag[me] = false; (k, 1) < (, lj) Sl <lior(ly =ljand k <j)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

. Nice lock! -
Bakery Lock in Java But which problem remains?
class BakeryLock boolean Conflict(int me) {
{ for (int i = 0; 1 < n; ++i)
AtomicIntegerArray flag; // there is no if (i !'= me && flag.get(i) != 0) {
AtomicBooleanArray int diff = label.get(i) - label.get(me);
AtomicIntegerArray label; if (diff < @ || diff == 0 && i < me)
final int n; return true;
}
BakeryLock(int n) { return false;
this.n = n; }
flag = new AtomicIntegerArray(n);
label = new AtomicIntegerArray(n); public void Acquire(int me) {
} flag.set(me, 1);
label.set(me, MaxLabel() + 1);
int MaxLabel() { while(Conflict(me));
int max = label.get(09); }
for (int i = 1; i<n; ++i)
max = Math.max(max, label.get(i)); public void Release(int me) {
return max; flag.set(me, 0);
} }
ces }

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

In general

Shared memory locations (atomic registers) come in different variants
* Multi-Reader-Single-Writer (flag[], label[] in Bakery)

* Multi-Reader-Multi-Writer (victim in Peterson)

= Theorem 5.1in[1]: “If S is a [atomic] read/write
system with at least two processes and S solves
mutual exclusion with global progress
[deadlock-freedom], then S must have at least
as many variables as processes”

INFORMATION AND COMPUTATION LT, 171-184 (1993)

[1]: Bounds on Shared Memory for Mutual Exclusion*
James E. Burns

Georgia Institute of Technology, Atfania, Georgia 30332
ANMD

Nancy A. LyNCH

Massachusetis Institute of Technalogy, Cambridge, Massachusetis 0239

The shared memory requirements of Dijkstra’s mutual exclusion problem are
examined. It 15 shown that »n binary shared variables are necessary and sufficient
to solve the problem of muiual exclusion with guaranteed global progress for n
processes usimng only atomic reads and writes of shared variables for communication.

AL | v esien ETHZUrich

We have constructed something ...

... that may not quite fulfil its purpose!
AND we cannot do better, can we?

= |s mutual exclusion really implemented like this?
= NO! Why?
- space lower bound linear in the number of maximum threads!

- without precautions (volatile variables) our assumptions on
memory reordering does not hold. Memory barriers in
hardware are expensive.

- algorithms are not wait-free (more later)

= But we proved that we cannot do better. What now!?
= Change (extend) the model with architecture engineering!

- modern multiprocessor architectures provide special instructions
for atomically reading and writing at once!

 “ewaen ETHZzUrich

Hardware Support for Parallelism
Read-Modify-Write Operations

v emien [ETHZzUrich
Hardware support for atomic operations: Example (x86)

CMPXCHG Compare and Exchange 125 Lock Prefix

CMPXCHG mem, reg

«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the

«The LOCK prefix causes certain

kinds of memory read-modify-write
instructions to occur atomically»

second operand to the first operand |
and sets the ZF flag in the flag
registers to 1. Otherwise it copies

the value in the first operand to the

A register and clears ZF flagto O» |

From the AMD64 Architecture
Programmer’s Manual

CMPXCHGEB, CMPXCHG16B

R. Hudson: IA memory ordering: https://www.youtube.com/watch?v=WUfvvFD5tAA (2008) 10

https://www.youtube.com/watch?v=WUfvvFD5tAA

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Hardware support for atomic operations: Example (ARM)

LDREX

LDREX <rd>, <rn>
«Loads a register from memory and
if the address has the shared

memory attribute, mark the physical
address as exclusive access for the
executing processor in a shared
monitor»

STREX

STREX <rd>, <rm>, <rn>
«performs a conditional store to
memory. The store only occurs if the

executing processor has exclusive
access to the memory addressed»

From the ARM Architecture
Reference Manual

11

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Hardware support for atomic operations

Atomic instructions are typically
much slower than simple read &
write operations [1]!

Typical instructions

Test-And-Set (TAS)
Example TSL register, flag (Motorola 68000)

Data owned by: Data owned by: _
Compare-And-Swap (CAS) : ;1*::.“5;;”“ o) = kg
IIIII-Ll 300
Example: LOCK CMPXCHG (Intel x86) - 7 | soodoce
. 200+ ."-w 2004]
Example: CASA (Sparc) g 2
2 Accesses to local oz Accesses to local
- and remote cachelines a cachelines in L1/L.2
Load Linked / Store Conditional 100 /'”m%létﬁ:’ﬁf%’::gi enas |1 | " oeror storics
than for reads
Example LDREX/STREX (ARM)) WWMM Ji o Jram
Example LL / SC (MIPS, POWER, RISC V) "% Data set size [oytes] ™ Bata set size [oytes]
(a) CAS, M/E state (b) CAS. S state

Fig. 6: The comparison of the latency of CAS on Xeon Phi. The requesting
core accesses its own cache lines (local) and cache lines of a different core
from the same chip (on chip).

[1]: H. Schweizer, M. Besta, T. Hoefler: Evaluating the Cost of Atomic Operations on Modern Architectures, ACM PACT’15

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Semantics of TAS and CAS

boolean TAS(memref s) int CAS (memref a, int old, int new)
if (mem([s] == 0) { oldval = mem[a];
o mem[s]=1; © if (old == oldval)
S return true; S ~ .
% % memla] = new;

} else
return oldval;
return false;

= are Read-Modify-Write («atomic») operations

= enable implementation of a mutex with O(1) space
(in contrast to Filter lock, Bakery lock etc.)

= are needed for lock-free programming (later in this course)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Implementation of a spinlock using simple atomic operations

Test and Set (TAS) Compare and Swap (CAS)
Init (lock) Init (lock)
lock = 0; lock = 0;
Acquire (lock) Acquire (lock)
while ITAS(lock); // wait while (CAS(lock, 0, 1) !=0);

ignore result

Release (lock) Release (lock)
lock = 0; CAS(lock, 1, 0);

en EETHzUrich

Read-Modify-Write in Java

15

spcl.inf.ethz.ch

ETH:zurich

Yy @spcl_eth

Let's try it.

Need support for atomic operations on a high level.

Available in Java (from JDK 5) with class
java.util.concurrent.atomic.AtomicBoolean

0per‘ations atomically set to value update iff

boolean set () R current value is expect. Return true

on success.
boolean get();
boolean compareAndSet(boolean expect, boolean update);

boolean getAndSet(boolean newValue);

sets newValue and returns previous
value.

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

How does this work?

* The JVM bytecode does not offer atomic operations like CAS.

[It does, however, support monitors via instructions monitorenter,
monitorexit, we will understand this later]

= But there is a (yet undocumented) class sun.misc.Unsafe offering direct
mappings from java to underlying machine / OS.

= Direct mapping to hardware is not guaranteed —
operations on AtomicBoolean are not guaranteed lock-free

Java.util.concurrent.atomic.Atomiclnteger

35
36 package java.util.concurrent.atomic;
37 import sun.misc.Unsafe;

Atomically sets the value to the given updated value if the current value == the expected value.

Parameters:
expect the expected value
update the new value

Returns:

true if successful. False return indicates that the actual value was not equal to the expected value.

133
134 public final boolean {!'compareﬁnd.get{int expect, int update) /{
135 return unsafe.comparefndSwapInt (this, wvalueOffset, expect, update);

136 }

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

(source: grepcode.com)

18

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

TASLock in Java
Spinlock:
public class TASLock implements Lock {

AtomicBoolean state = new AtomicBoolean(false); Try to get the lock

Keep trying until the lock is
public void lock() { ac Eire‘c,i (rgeturn value is false)
while(state.getAndSet(true)) {} d .

}
unlock
public void unlock() { release the lock (set to false)
state.set(false);
}

SPINNER® Ride" SPINNER’ shift” SPINNER® Rally*

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Simple TAS Spin Lock — Measurement Results

TAS

n =1, elapsed= 224, normalized= 224

n =2, elapsed= 719, normalized= 359

n =3, elapsed= 1914, normalized= 638

n =4, elapsed= 3373, normalized= 843

n =5, elapsed= 4330, normalized= 866

n =6, elapsed= 6075, normalized= 1012

n =7, elapsed= 8089, normalized= 1155

n = 8, elapsed= 10369, normalized= 1296

n =16, elapsed=41051, normalized= 2565
n =32, elapsed= 156207, normalized= 4881
n = 64, elapsed= 619197, normalized= 9674

AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while(state.getAndSet(true)) {}

}

public void unlock() {
state.set(false);

}

= run n threads

= each thread acquires and releases
the TASLock a million times

= repeat scenario ten times and add
up runtime

= record time per thread

Intel core i7@3.4 GHz, 4 cores + HT

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Why?

sequential bottleneck

contention: threads fight
for the bus during call of
getAndSet()

cache coherency protocol
invalidates cached copies
of the lock variable on
other processors

AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while(state.getAndSet(true)) {}
}

public void unlock() {
state.set(false);

}

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Test-and-Test-and-Set (TATAS) Lock

public void lock()

{
do

while(state.get()) {}
while (!state.compareAndSet(false, true));

}
public void unlock()
{

state.set(false);

}

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Measurement
TAS
TTAS
ms/ note that this varies
thread strongly between
machines and JVM
implementations and
2000 even between runs.
Take it as a qualitative
" 0 0 0 2 o 0 0 statement

number threads

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

TATAS does not generalize

= Example: Double-Checked Locking

(-

double-checked locking

0 results (0.27 seconds)

Double-Checked Locking
An Optimization Pattern for Efficiently

Initializing and Accessing Thread-safe Objects

Double-checked locking - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Double-checked_locking
In software engineering, double-checked locking (also known as "double-checked

Douglas C. Schmidt
schmidt@cs.wustl.edu
Dept. of Computer Science
Wash. U., St. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

the Singleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism. To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (ie., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent software.

This paper shows how the canonical implementation [1] of

Tim Harrison
harrison@ cs.wustl.edu
Dept. of Computer Science
Wash. U., St. Louis

context of concurrency. To illustrate this, consider how the
canonical implementation [1] of the Singleton pattern be-
haves in multi-threaded environments,

The Singleton pattern ensures a class has only one instance
and provides a global point of access to that instance [1]. Dy-
namically allocating Singletons in C++ programs is common
since the order of initialization of global static objects in C++
programs is not well-defined and is therefore non-portable.
Moreover, dynamic allocation avoids the cost of initializing
a Singleton if it is never used.

Defining a Singleton is straightforward:

class Singleton

public:

static Singleton *instance (wvoid)
if (instance_ == Q)
/f Critical section.

instance_ = new Singleton;

return instance_;

locking optimization") is a software design pattern used to reduce the ...
Usage in Java - Usage in Microsoft Visual C++ - Usage in Microsoft .MET ...

The "Double-Checked Locking is Broken" Declaration
www.cs.umd.edu/~pughfjava/.. /DoubleCheckedLocking.html

Details on the reasons - some very subtle - why double-checked locking cannot be

relied upon to be safe. Signed by a number of experts, including Sun ...

Double-checked locking and the Singleton pattern
www.ibm.com/developerworks/javallibrany/j-dclfindex html

1 May 2002 — Double-checked locking is one such idiom in the Java programming

language that should never be used. In this article, Peter Haggar ...

Double-checked locking: Clever, but broken - Javaworld
www javaworld.com » Java Development Tools

9 Feb 2001 — Many Java programmers are familiar with the double-checked locking

idiom, which allows you to perform lazy initialization with reduced ...

[FoF) Double-Checked Locking An Optimization Pattern for Efficiently ...

sunsite.icm.edu.pl/packages/ace/ACE/PDF/DC-Locking .pdf

File Format: PDF/Adobe Acrobat - Quick View

by DC Schmidt - Cited by 14 - Related articles

solve this problem, we present the Double-Checked Lock- ing optimization ...
Double-Checked Locking illustrates how changes in under- lying forces (ji.e. ...

Problem: Memory ordering leads to race-conditions!

spcl.inf.ethz.ch

Yy @spcl_eth

TATAS with backoff

Observation

" (too) many threads fight for access to the same resource
= slows down progress globally and locally

Solution

= threads go to sleep with random duration
" increase expected duration each time the resource is not free

oy 8y 8y (8 (g (8 7

ETH:zurich

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Lock with Backoff

public void lock() {
Backoff backoff = null;
while (true) {

while (state.get()) {}; // spin reading only (TTAS)

if (!state.getAndSet(true)) // try to acquire, returns previous val
return;

else { // backoff on failure
try {

if (backoff == null) // allocation only on demand
backoff = new Backoff(MIN DELAY, MAX DELAY);
backoff.backoff();
} catch (InterruptedException ex) {}

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

exponential backoff

class Backoff

{...
public void backoff() throws InterruptedException {

int delay = random.nextInt(limit);

if (limit < maxDelay) { // double limit if less than max
limit = 2 * limit;

}

Thread.sleep(delay);

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Measurement

12000

10000

TAS

8000

TTAS

mS/ 6000
thread

4000

yeah!

2000

— . 2 BackoffLock

0 10 20 30 40 50 60 70

number threads

28

spcl.inf.ethz.ch P
@spcl_eth E'HZUI”ICh

Deadlock

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Deadlocks — Motivation

Consider a method to transfer money between bank accounts

class BankAccount {

synchronized void withdraw(int amount) {..}
synchronized void deposit(int amount) {..}

synchronized void transferTo(int amount, BankAccount a) {
this.withdraw(amount);

a.deposit (amou nt) 5 Thread aquires second lock in a.deposit.
} Can this become a problem?

}

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

class BankAccount {

DeadIOCkS — MOtivation ;ynchr'onized void withdraw(int amount) {..}

synchronized void deposit(int amount) {..}

synchronized void transferTo(int amount, BankAccount a) {

Suppose x and y are instances of class BankAccount iR i
) }
Thread 1: x.transferTo(1,y) Thread 2:y.transferTo(1,x)
acquire lock for x =
withdraw from x ; (—~
* acquire lock for y

withdraw from y

Time

acquire lock for x
acquire lock for y

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Deadlocks

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.

v omi. ETHZzUrich
Threads and Resources

Graphically: Threads A, and Resources (Locks) Ii

Thread P attempts to acquire resource a: P /-—bli

Resource b is held by thread Q: Ii—» Q

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Deadlocks — more formally

A deadlock for threads T; ... T,, occurs when the directed graph describing the
relation of T, ... T;, and resources R ... R,,, contains a cycle.

T, wants R T, has R,
/_’ ‘ : i “— T,

U
"/

Dy

/
W

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Techniques

Deadlock detection in systems is implemented by finding cycles in the
dependency graph.

 Deadlocks can, in general, not be healed. Releasing locks generally leads to
inconsistent state.

Deadlock avoidance amounts to techniques to ensure a cycle can never arise
* two-phase locking with retry (release when failed)

 Usually in databases where transactions can be aborted without consequence
* resource ordering

e Usually in parallel programming where global state is modified

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Back to our example: what can we do?
class BankAccount {

synchronized void withdraw(int amount) {..}
synchronized void deposit(int amount) {..}

synchronized void transferTo(int amount, BankAccount a) {
this.withdraw(amount);
a.deposit(amount);

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Option 1: non-overlapping (smaller) critical sections

class BankAccount {
synchronized void withdraw(int amount) {..}
synchronized void deposit(int amount) {..}
void transferTo(int amount, BankAccount a) {
this.withdraw(amount);
a.deposit(amount);

} Money disappears for a (very short?) moment!
Can we allow such transient inconsistencies?
Very often unacceptable!

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Option 2: one lock for ali

class BankAccount {
static Object globalLock = new Object();
// withdraw and deposit protected with globallLock!

void withdraw(int amount) {..}
void deposit(int amount) {..}

void transferTo(int amount, BankAccount to) {
synchronized (globalLock) {

W1thdraw§amount) > deadlock avoided but no concurrent
to.deposit (amount) 5 transfer possible, even not when the
} pairs of accounts are disjoint.
} Often very inefficient!

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Option 3: global ordering of resources

class BankAccount {

void transferTo(int amount, BankAccount to) {
if (to.accountNr < this.accountNr)

synchronized(this){
synchronized(to) { Unique global ordering required.
withdraw(amount); Whole program has to obey this order to
to.deposit(amount); avoid cycles.
1} Code taking only one lock can ignore it.
else
synchronized(to){
synchronized(this) {
withdraw(amount);
to.deposit(amount);
}}

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Ordering of resources

40

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Programming trick

No globally unique order available? Generate it:

class BankAccount {
private static final AtomicLong counter = new AtomicLong();
private final long index = counter.incrementAndGet();

void transferTo(int amount, BankAccount to) {
if (to.index < this.index)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Another (historic) example: from the Java standard library

class StringBuffer {
private int count;
private char[] value;

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)

this.expand(...);
sb.getChars(0, len, this.value, this.count);

C—
} SAID NO ONE EVER™

synchronized getChars(int x, int y, char[] a, int z) {
“copy this.value[x..y] into a starting at z”

Do you find the two
problems?

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Another (historic) example: from the Java standard library

Problem #1:

= Lock for sb is not held between calls
tosb.length and sb.getChars

class StringBuffer {
private int count;

private char[] value;
= sb could get longer

synchronized append(StringBuffer sb) { = Would cause append to not append
int len = sb.length(); whole string
if(this.count + len > this.value.length) = The semantics here can be discussed|

this. exPand(...) 5 Definitely an issue if sb got shorther ©

sb.getChars(0, len, this.value, this.count);

}

Problem #2:

synchronized getChars(int x, int y, char[] a, int z) { . paogdliock ootential if two threads try
“copy this.value[x..y] into a starting at z” to append “crossing” StringBuffers, just

} like in the bank-account first example

Do you find the two = x.append(y); y.append(x);

problems?

Amy Williams, William Thies, and Michael D. Ernst: Static Deadlock Detection for Java Libraries, ECOOP’05 (for deadlock)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Fix?

= Not easy to fix both problems without extra overheads:
* Do not want unique ids on every StringBuffer
* Do not want one lock for all StringBuffer objects

= Actual Java library: initially fixed neither (left code as is; changed javadoc)
= Up to clients to avoid such situations with own protocols

= Today: two classes StringBuffer (claimed to be synchronized) and
StringBuilder (not synchronized)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Perspective

Code like account-transfer and string-buffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects

= Can document a fixed order among types

= Example: “When moving an item from the hashtable to the work queue, never try to
acquire the queue lock while holding the hashtable lock”

2. Easier case: objects are in an acyclic structure

= Can use the data structure to determine a fixed order

= Example: “If holding a tree node’s lock, do not acquire other tree nodes’ locks unless
they are children in the tree”

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Significance of Deadlocks

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But the Deadlock is the dominant problem of reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvation denotes the repeated but unsuccesful attempt of a recently
unblocked process to continue its execution.

spcl.inf.ethz.ch P
@spcl_eth E'HZUI”ICh

Semaphores

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Why do we need more than locks?

Locks provide means to enforce atomicity via mutual exclusion

They lack the means for threads to communicate about changes
= e.g., changes in the state

Thus, they provide no order and are hard to use
= e.g., if threads A and B lock object X, it is not determined who comes first

Example: producer / consumer queues

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Semaphore Edsger W. Dijkstra 1965

.ﬁ

Se|ma|phor, das od. der; -s, -e [zu griech. ogpa = Zeichen u. dopos = tragend]:
Signalmast mit beweglichen Fliigeln.

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

49

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Semaphore: Semantics

Semaphore: integer-valued abstract data type S with some initial value s>0 and
the following operations™

acquire(S)

{ (8

= wait until S > 0
2 dec(S)

}

acquire

release(S)

{ (protected)
£ inc(S)
© } release

* Dijkstra called them P (probeeren), V (vrijgeven), also often used: wait and signal

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Building a lock with a semaphore

mutex = Semaphore(1);

lock mutex := mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := mutex.release()
one other thread will be let in

Semaphore number:
1 - unlocked

0 - locked

x>0 — x threads will be let into “critical section”

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Example: scaled dot product

= Execute in parallel: x=(a™ * d) * z
= a3 andd are column vectors
= X,z are scalar
= Assume each vector has 4 elements
= x=(a,*d; +a,*d, +a;*d; +a,*d,) * z
= Parallelize on two processors (using two threads A and B)
" X, =a,"d;+a,*d,
" Xg=ay*dy+a,*d,
" X =(xy+Xg) ¥z
= Which synchronization is needed where?
= Using locks?
= Using semaphores?

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

= Two processes P and Q executing code.

= Rendezvouz: locations in code, where P and Q wait for the other
to arrive. Synchronize P and Q.

this using Semaphores?

I How would you implement

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphores P_Arrived and Q Arrived

P Q
init P Arrived=0 Q Arrived=0
pre
rendezvous ? ?

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphores P_Arrived and Q Arrived

P Q

init P Arrived=0 Q Arrived=0

pre

rendezvous release(P_Arrived) acquire(P_Arrived)
? ?

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q Arrived Dou you find

the problem?

P Q
init P Arrived=0 Q Arrived=0
pre
rendezvous acquire(Q _Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q Arrived)
post

o PO spcl.inf.ethz.ch L]
| v e ETHZUrich

requires P owned by
Deadlock / /‘\

Q_Arrived P_Arrived
owned by QJ’/requires
P Q
init P Arrived=0 Q Arrived=0
pre
rendezvous acquire(Q _Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q Arrived)
post

57

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores
Wrong solution with Deadlock

P pre

pre

58

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Assume Semaphores P_Arrived and Q Arrived

P Q

init P_Arrived=0 Q Arrived=0

pre

rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q Arrived) release(Q _Arrived)

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Implementing Semaphores without Spinning (blocking queues)

Consider a process list Q, associated with semaphore S

acquire(S)
{if S > 0 then
dec(S)
else
put(Q;, self) @
block(self)
end }

atomic

acquire

release(S)
{if Qg == @ then

inc(S)
else (protected)

get(Qs, p) §§\
unblock(p)

end } release

atomic

spcl.inf.ethz.ch

YW @spcl_eth E'HZUI”ICh
P Q
SChEdUIIng Scenarlos init P_Arrived=e Q_Arrived=0
pre
rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q_Arrived) release(Q_Arrived)
post
P first
P - pre H release post [——
Q pre || acquire H release [post |—
time
release signals (arrow)
. acquire may wait (filled box)
Q first
P pre H release post |—

v {}

release [H post |—
time

Q - pre HEsMIL:

61

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q Arrived

P Q
init P_Arrived=0 Q_Arrived=0
pre
rendezvous release(P_Arrived) release(Q Arrived)
acquire(Q Arrived) acquire(P_Arrived)
post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

That’s even better.

P first

P Q
init P_Arrived=0 Q_Arrived=0
pre
rendezvous release(P_Arrived) release(Q _Arrived)
acquire(Q_Arrived) acquire(P_Arrived)
post

Q first

pre H release
pre H release

post |—
ﬁ
pre || release [acquire H post s
release signals (arrow)
acquire may wait (filled box)
pre H release H acquire H post >
v
post |—

63

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Back to our dot-product

= Assume now vectors with 1 million entries on 10,000 threads {?1!'5'

= \ery common! (over the weekend, we ran 57 Pflop/s on 27,360 GPUs)
= How would you implement that?

= Semaphores, locks? B d
* Time for a higher-level abstraction! gl g
= Supporting threads in bulk-mode Mﬂde for
Move in lock-step Ilel
= And enabling a “bulk-synchronous parallel” (BSP) model mt

The full BSP is more complex (supports distributed memory) 0mp

wvon N.
ueq al amp b bl o the

nt bridge bcwtc
canh ff :ntlyc mp]d
or

hmodely bﬂ']umlmed

lel comp I.n n if that b ome as wnd l M:d T}n]c
cal date for Ie, a

ek it
Leslie & Yaliant

spcl.inf.ethz.ch S
v emion ETHzUrich

'YOU SHALL

' NOTPASS

Barriers

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Barrier

Synchronize a number of processes.

...... How would you

implement this using
Semaphores?

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Barrier — 1%t try

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

P1 P2 [... |Pn
init barrier = 0; volatile count = 0
pre Race Condition !
barrier count++ éﬁ

if (count==n) rel€yse(barrier) < < <

acquire(bar*r*ier&Q‘

post v Some wait forever!

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Barrier

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

Invariants
«Each of the processes eventually
reaches the acquire statement"

Pl
«The barrier will be opened if and
init barrier = 0; volatile cconlyifall processes have reached the
barrier"
pre « o
barrier count++ éﬁ «count provides the number of
. . rocesses that have passed the
if (Count==n) PG].@ € (ba r‘r\ler‘) Earrier" (violated) i
acquire(bar*r*ier&Q‘
«when all processes have reached
post c oo the barrier then all waiting processes

can continue" (violated)

spcl.inf.ethz.ch

ETH:zurich

Recap: Race Condition

X++

reg = X
reg =reg +1
X =reg

-
§ Shared
® Variable
wn
-
X
<
read X |
read x
........... >
write x lc........ (U
write X
v \ 4 v
Race Condition

-
O

O

P

wn

o

reg = X

reg =reg -1
X =reg

Yy @spcl_eth

69

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

With Mutual Exclusion

-
o Critical
CritiFaI 3 X © e
Section A @)
O
o .
X++ wn
j@)
r‘ - X <
€6 read x
reg =reg +1 ,
write x
X= reg >
O TIoT X--
read x €=
Mutual write x reg =reg-1
Exclusion Qovnnnnnnrrenannnan s X=reg
‘1’ \ 4 v

70

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Barrier

Synchronize a number (n) of processes.
Semaphores barrier, mutex. Integer count.

Pl P2 . Pn
init mutex = 1; barrier = 0; count = @
pre
barrier acquire(mutex)
count++
release(mutex)
if (count==n) release(barrier) < < <
acqu1re(barr}er) turnstile
release(barrier)
post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Reusable Barrier. 1st trial.

Pl ‘ - .. ‘Pn
init mutex = 1; barrier = 0; count = 0

pre Dou you see
the problem?

barrier acquire(mutex)
count++
release(mutex)
if (count==n) release(barrier) Race Condition !

acquire(barrier)
release(barrier)

acquire(mutex)

count--
release(mutex) Race Condition !
if (count==0) acquire(barrier)

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Reusable Barrier. 1st trial.

Pl ‘ c.. ‘Pn
init mutex = 1; barrier = 0; count = 0
pre
barrier acquire(mutex)
count++ .
release(mutex) Invariants

if (count==n) release(barrier) «Only when all processes have

) . reached the turnstyle it will be
acquire(barrier)

) opened the first time" <«
release(barrier)
«When all processes have run
acquire(mutex) through the barrier then count = 0"
count--
release(mutex) «When all processes have run
if (count==0) acquire(barrier) th.rough the barrier then barrier = 0"
(violated)

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

lllustration of the problem: scheduling scenario

barrier =0
count++
|
(count=1)
> count++
> count++
|
barrier =1 count=3 2 release(barrier)
. : <€
barrier = 2 count=3 -2 release(barrier)
<€

turnstile(barrier)

>

turnstile(barrier)

turnstile(barrier)

barrier = 2

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Reusable Barrier. 2nd trial.

Pl ‘ ... ‘Pn
init mutex = 1; barrier = 0; count = ©
pre o Dou you see
_ . the problem?
barrier acquire(mutex)
count++
if (count==n) release(barrier)
release(mutex)

Process can pass

. . other processes!
acquire(barrier)

release(barrier)

acquire(mutex)

count--

if (count==0) acquire(barrier)
release(mutex)

post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Reusable Barrier. 2nd trial.

Pl . .. ‘ Pn
init mutex = 1; barrier = 0; count = ©
pre “ o
barrier acquire(mutex) ///\
count++
if (count==n) release(barrier) Invariants
release(mutex)

«When all processes have passed the
acquir'e(bar‘r‘ier‘) barrier, it holds that barrier =0
release(barrier) .

« Even when a single process has

. passed the barrier, it holds that
acquire(mutex) barrier = 0» (violated)
count--
if (count==0) acquire(barrier)
release(mutex)
post

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Solution: Two-Phase Barrier

init mutex=1; barrierl=0; barrier2=1; count=0
barrier acquire(mutex)
count++;

if (count==n)
acquire(barrier2); release(barrierl)
release(mutex)

acquire(barrierl); release(barrierl);
// barrierl = 1 for all processes, barrier2 = 0 for all processes
acquire(mutex)
count--;
if (count==0)
acquire(barrierl); release(barrier2)
signal(mutex)

acquire(barrier2); release(barrier2)
// barrier2 = 1 for all processes, barrierl = @ for all processes

Of course, this is very slow in practice, see http://www.spiral.net/software/barrier.ntml for a specialized fast barrier for x86! 77

http://www.spiral.net/software/barrier.html

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Lesson Learned ?

= Semaphore, Rendevouz and Barrier:
= Concurrent programming is prone to errors in reasoning.

= A naive approach with trial and error is close-to impossible.
= Ways out:

= |dentify invariants in the problem domain, ensure they hold for your implementation
= |dentify and apply established patterns
= Use known good libraries (like in the Java API)

spcl.inf.ethz.ch oo o
v enien [ETHZUrich

Summary

Locks are not enough: we need methods to wait for events / notifications
Semaphores
Rendezvous and Barriers

Next lecture:
Producer-Consumer Problem
Monitors and condition variables

