
spcl.inf.ethz.ch

@spcl_eth

TORSTENHOEFLER

Parallel Programming

Beyond Locks II: Semaphore, Barrier, Producer-/
Consumer, Monitors

spcl.inf.ethz.ch

@spcl_eth

2

Another (historic) example: from the Java standard library

class StringBuffer {

private int count ;

private char[] value ;

ƛ

synchronized append(StringBuffer sb) {

int len = sb.length ();

if(this .count + len > this.value.length)

this .expand ƽƛƾƘ

sb.getChars (0, len , this.value , this.count);

}

synchronized getChars (int x, int y, char[] a, int z) {

ƧÃÏÐÙ this .value [x..y ǂ ÉÎÔÏ Á ÓÔÁÒÔÉÎÇ ÁÔ Úƨ

}

}

Do you find the two
problems?

spcl.inf.ethz.ch

@spcl_eth

class StringBuffer {

private int count ;

private char[] value ;

ƛ

synchronized append(StringBuffer sb) {

int len = sb.length ();

if(this .count + len > this.value.length)

this .expand ƽƛƾƘ

sb.getChars (0, len , this.value , this.count);

}

synchronized getChars (int x, int y, char[] a, int z) {

ƧÃÏÐÙ this .value [x.. y] into a starting at zƨ

}

}

3

Another (historic) example: from the Java standard library
Problem #1:

Á Lock for sb is not held between calls
to sb.length and sb.getChars

Á sb could get longer

Á Would cause append to not append
whole string
Á The semantics here can be discussed!

Definitely an issue if sb got shortherJ

Problem #2:

Á Deadlock potential if two threads try
ǘƻ ŀǇǇŜƴŘ άŎǊƻǎǎƛƴƎέ StringBuffers, just
like in the bank-account first example

Á x.append (y); y.append (x);Do you find the two
problems?

Amy Williams, William ThiesΣ ŀƴŘ aƛŎƘŀŜƭ 5Φ 9ǊƴǎǘΥ {ǘŀǘƛŎ 5ŜŀŘƭƻŎƪ 5ŜǘŜŎǘƛƻƴ ŦƻǊ WŀǾŀ [ƛōǊŀǊƛŜǎΣ 9/hhtΩлр όŦƻǊ ŘŜŀŘƭƻŎƪύ

spcl.inf.ethz.ch

@spcl_eth

ÁNot easy to fix both problems without extra overheads:
ÁDo not want unique ids on every StringBuffer

ÁDo not want one lock for all StringBuffer objects

ÁActual Java library: initially fixed neither (left code as is; changed javadoc)
Á Up to clients to avoid such situations with own protocols

ÁToday: two classes StringBuffer(claimed to be synchronized) and
StringBuilder(not synchronized)

4

Fix?

spcl.inf.ethz.ch

@spcl_eth

Code like account-transfer and string-buffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects
ÁCan document a fixed order among types
Á9ȄŀƳǇƭŜΥ ά²ƘŜƴ ƳƻǾƛƴƎ ŀƴ ƛǘŜƳ ŦǊƻƳ ǘƘŜ hashtableto the work queue, never try to

acquire the queue lock while holding the hashtableƭƻŎƪέ

2. Easier case: objects are in an acyclic structure
ÁCan use the data structure to determine a fixed order
Á9ȄŀƳǇƭŜΥ άLŦ ƘƻƭŘƛƴƎ ŀ ǘǊŜŜ ƴƻŘŜΩǎ ƭƻŎƪΣ Řƻ ƴƻǘ ŀŎǉǳƛǊŜ ƻǘƘŜǊ ǘǊŜŜ ƴƻŘŜǎΩ ƭƻŎƪǎ ǳƴƭŜǎǎ
ǘƘŜȅ ŀǊŜ ŎƘƛƭŘǊŜƴ ƛƴ ǘƘŜ ǘǊŜŜέ

5

Perspective

spcl.inf.ethz.ch

@spcl_eth

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But the Deadlockis the dominant problem of reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvationdenotes the repeated but unsuccesful attempt of a recently
unblocked process to continue its execution.

6

Significance of Deadlocks

spcl.inf.ethz.ch

@spcl_eth

Semaphores

7

spcl.inf.ethz.ch

@spcl_eth

Å Locks provide means to enforce atomicity via mutual exclusion

Å They lack the means for threads to communicate about changes
Áe.g., changes in the state

Å Thus, they provide no order and are hard to use
Áe.g., if threads A and B lock object X, it is not determined who comes first

Å Example: producer / consumer queues

8

Why do we need more than locks?

spcl.inf.ethz.ch

@spcl_eth

Semaphore EdsgerW. Dijkstra 1965

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

Se|ma|phor, das od. der; -s, -e [zu griech. ̀ ʶ˃ʰ= Zeichen u. ˒ ƻˊƻǎ = tragend]:
Signalmast mit beweglichen Flügeln.

9

spcl.inf.ethz.ch

@spcl_eth

Semaphore: integer-valued abstract data type S with some initial value sÓ0 and
the following operations*

acquire(S)
{

wait until S > 0
dec(S)

}

release(S)
{

inc(S)
}

10

Semaphore: Semantics

* Dijkstra called them P (probeeren), V (vrijgeven), also often used: wait and signal

acquire

release

(protected)

a
to

m
ic

a
to

m
ic

spcl.inf.ethz.ch

@spcl_eth

sem_mutex= Semaphore(1);

lock mutex := sem_mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := sem_mutex.release()
one other thread will be let in

Semaphore number:
м Ҧ ǳƴƭƻŎƪŜŘ

л Ҧ ƭƻŎƪŜŘ

ȄҔл Ҧ Ȅ ǘƘǊŜŀŘǎ ǿƛƭƭ ōŜ ƭŜǘ ƛƴǘƻ άŎǊƛǘƛŎŀƭ ǎŜŎǘƛƻƴέ

11

Building a lock with a semaphore

spcl.inf.ethz.ch

@spcl_eth

ÁExecute in parallel: x = (aT * d) * z
Áa and d are column vectors

Áx, z are scalar

ÁAssume each vector has 4 elements
Áx = (a1*d1 + a2*d2 + a3*d3 + a4*d4) * z

ÁParallelize on two processors (using two threads A and B)
ÁxA = a1*d1 + a2*d2

ÁxB = a3*d3 + a4*d4

Áx = (xA+ xB) * z

ÁWhich synchronization is needed where?
ÁUsing locks?

ÁUsing semaphores?

12

Example: scaled dot product

spcl.inf.ethz.ch

@spcl_eth

ÁTwo processes P and Q executing code.

ÁRendezvouz: locations in code, where P and Q wait for the other
to arrive. Synchronize P and Q.

13

Rendezvous with Semaphores

P

Q

P

Q

How would you implement
this using Semaphores?

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

14

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous ? ?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

15

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
?

acquire(P_Arrived)
?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

16

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

Dou you find
the problem?

spcl.inf.ethz.ch

@spcl_eth

17

Deadlock

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

P_ArrivedQ_Arrived

owned byrequires

owned by requires

P

Q

spcl.inf.ethz.ch

@spcl_eth

18

Rendezvous with Semaphores
Wrong solution with Deadlock

pre

pre acquire

P

Q release

releaseacquire

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q_Arrived

19

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
acquire(Q_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

spcl.inf.ethz.ch

@spcl_eth

Consider a process list QS associated with semaphore S

acquire(S)
{if S > 0 then

dec(S)
else

put(Q S, self)
block(self)

end }

release(S)
{if Q S == Ø then

inc(S)
else

get(Q S, p)
unblock(p)

end }

20

ImplementingSemaphoreswithout Spinning (blockingqueues)

acquire

release

(protected)

10000S

QS

a
to

m
ic

a
to

m
ic

