ETHzurich

spcl.inf.ethz.ch
YW @spcl_eth

TORSTEN HOEFLER

Parallel Programming

EU ministers commit to digitising Europe
with high-performance computing power

Ministers from seven European
countries (France, Germany, Italy,
Luxembourg, Netherlands, Portugal
and Spain) have signed in Rome a
declaration to support the next

. E .
infrastructures, a European project
of the size of Airbus in the 1990s
and of Galileo in the 2000s.

They plan to establish EuroHPC for acquiring
and deploying an integrated world-class high-
performanc ing infrastructure
capable of g least 1018 kalculations per
second (so-called exascale computers). This will be available across the EU for
scientific communities, industry and the public sector, no matter where the users
are located.

European Processor Initiative

Andrus Ansip, European Commission Vice-President for the Digital Single Market
welcomed this important step: "High-performance computing is moving towards
its next frontier - more than 100 times faster than the fastest machines currently
available in Europe. But not all EU countries have the capacity to build and
maintain such infrastructure, or to develop such technologies on their own. If we
stay dependent on others for this critical resource, then we risk gelting
technologically locked’, delayed or deprived of siralegic know-how. Europe needs
integrated world-class capability in supercomputing to be ahead in the global
race. Today's declaration is a great step forward. | encourage even more EU
countries to engage in this ambitious endeavour”. See full speech by Vice-
President Ansip at the Digital Day in Rome.

High-performance computing (HPC) involveqthousands of processorsworking in
parallel to analyse billions of pieces of data in real time. HPC allows to design
and new drugs and simulate their effects, and provide faster diagnosis, better
treatments and personalised health care. It can make our communications and

spcl.inf.ethz.ch 0o o
w enien ETHZUrich

Another (historic) example: from the Java standard library

class StringBuffer {
private int count;
private char[] value;

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(..);
sb.getChars(0, len, this.value, this.count);

S —— |
} SAID NO ONE EVER™

synchronized getChars(int x, int y, char[] a, int z) {
“copy this.value[x..y] into a starting at z”

Do you find the two
problems?

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Another (historic) example: from the Java standard library
Problem #1:

= Lock for sb is not held between calls
tosb.length and sb.getChars

= sb could get longer

class StringBuffer {
private int count;
private char[] value;

synchronized append(StringBuffer sb) { = Would cause append to not append
int len = sb.length(); whole string
if(this.count + len > this.value.length) = The semantics here can be discussed!
this.expand(..); Definitely an issue if sb got shorther ©
sb.getChars(0, len, this.value, this.count);
}
Problem #2:
synchronized getChars(int x, int y, char[] a, int z) { . posdlock ootential if two threads try
“copy this.value[x..y] into a starting at z” to append “crossing” StringBuffers, just
} like in the bank-account first example

Do you find the two = X.append(y); y.append(x);

problems?

Amy Williams, William Thies, and Michael D. Ernst: Static Deadlock Detection for Java Libraries, ECOOP’05 (for deadlock)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Fix?

= Not easy to fix both problems without extra overheads:
* Do not want unique ids on every StringBuffer
"= Do not want one lock for all StringBuffer objects

= Actual Java library: initially fixed neither (left code as is; changed javadoc)
= Up to clients to avoid such situations with own protocols

= Today: two classes StringBuffer (claimed to be synchronized) and
StringBuilder (not synchronized)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Perspective

Code like account-transfer and string-buffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects

= Can document a fixed order among types

= Example: “When moving an item from the hashtable to the work queue, never try to
acquire the queue lock while holding the hashtable lock”

2. Easier case: objects are in an acyclic structure

= Can use the data structure to determine a fixed order

= Example: “If holding a tree node’s lock, do not acquire other tree nodes’ locks unless
they are children in the tree”

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Significance of Deadlocks

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But the Deadlock is the dominant problem of reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvation denotes the repeated but unsuccesful attempt of a recently
unblocked process to continue its execution.

spcl.inf.ethz.ch oo o
@spcl_eth E'HZUI’ICh

Semaphores

spcl.inf.ethz.ch
YW @spcl_eth

Why do we need more than locks?

Locks provide means to enforce atomicity via mutual exclusion

They lack the means for threads to communicate about changes
= e.g., changes in the state

Thus, they provide no order and are hard to use
= e.g., if threads A and B lock object X, it is not determined who comes first

Example: producer / consumer queues

ETH:zurich

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Se|ma|phor, das od. der; -s, -e [zu griech. oepa = Zeichen u. ¢opos = tragend]:
Signalmast mit beweglichen Fliigeln.

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Semaphore: Semantics

Semaphore: integer-valued abstract data type S with some initial value s>0 and
the following operations™

acquire(S)

{ «

£ wait until S > ©
2 dec(S)

}

acquire

release(S)

{ (protected)
£ inc(S)
© } release

* Dijkstra called them P (probeeren), V (vrijgeven), also often used: wait and signal

spcl.inf.ethz.ch

Building a lock with a semaphore

sem_mutex = Semaphore(1);

lock mutex := sem_mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := sem_mutex.release()
one other thread will be let in

Semaphore number:
1 - unlocked

0 - locked

x>0 — x threads will be let into “critical section”

YW @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Example: scaled dot product

= Execute in parallel: x=(a" *d) * z
= aandd are column vectors
= X, zare scalar
= Assume each vector has 4 elements
= x=(a,*d, +a,*d, +a;*d; +a,*d,) * z
= Parallelize on two processors (using two threads A and B)
" X, =a,*d; +a,*d,
" Xg=aj*d;+a,*d,
" X =(x,+ Xg) ¥z
= Which synchronization is needed where?
= Using locks?
= Using semaphores?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

= Two processes P and Q executing code.

= Rendezvouz: locationsin code, where P and Q wait for the other
to arrive. Synchronize P and Q.

this using Semaphores?

I How would you implement

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphores P Arrived and Q Arrived

P Q
init P _Arrived=0 Q Arrived=0
pre
rendezvous ? ?

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphores P_Arrived and Q Arrived

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived) acquire(P_Arrived)
? ?

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q Arrived Dou you find

the problem?

P Q

init P _Arrived=0 Q Arrived=0

pre

rendezvous acquire(Q _Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q Arrived)

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

requires P owned by
Deadlock / /'\

Q_Arrived P_Arrived
owned&‘ Q/'/requires
P Q
init P_Arrived=0 Q_Arrived=0
pre
rendezvous acquire(Q _Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q Arrived)
post

17

spcl.inf.ethz.ch 5o o
w osien ETHZzUrich

Rendezvous with Semaphores
Wrong solution with Deadlock

P pre

18

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Assume Semaphores P_Arrived and Q Arrived

P Q

init P _Arrived=0 Q Arrived=0

pre

rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q _Arrived) release(Q Arrived)

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Implementing Semaphores without Spinning (blocking queues)

Consider a process list Q. associated with semaphore S

acquire(S)
{if S > 0 then
dec(S)
else
ut(Q,, self) @
block(self)
end }

atomic

acquire

release(S)
{if Qs == @ then

inc(S)
else (protected)

get(Qs: p) %
unblock(p)

end } release

atomic

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

P Q
SChedUIIng Scena rlos init P_Arrived=0 Q_Arrived=0
pre
rendezvous release(P_Arrived) acquire(P_Arrived)
acquire(Q_Arrived) release(Q_Arrived)
post
P first
P - pre H release post [
Q pre [i acquire H release [-{ post [
time
release signals (arrow)
. acquire may wait (filled box)
Q first
P pre H release HEL[MIfz post |
Q | pre eIl release 4 post [

time

21

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q Arrived

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived) release(Q _Arrived)
acquire(Q Arrived) acquire(P_Arrived)

post

That’s even better.

P first

pre H release
pre H release

spcl.inf.ethz.ch T
w owien ETHZUrICh
P Q
init P_Arrived=0 Q Arrived=0
pre
rendezvous release(P_Arrived) release(Q_Arrived)
acquire(Q_Arrived) acquire(P_Arrived)
post
pOSt e
pre 1 release | acquire B pOSt >
release signals (arrow)
acquire may wait (filled box)
pre release [acquire B pOSt >
pOSt —

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Back to our dot-product

= Assume now vectors with 1 million entries on 10,000 threads \?'5‘
= Very common! (over the weekend, we ran >1M threads on 27,360 GPUs)
= How would you implement that?
= Semaphores, locks?

* Time for a higher-level abstraction! Brldgl“g
= Supporting threads in bulk-mode Mode fﬂ[‘

drdllel

Move in lock-step

= And enabling a “bulk-synchronous parallel” (BSP) model C mt

The full BSP is more complex (supports distributed memory) mp

q al nmp on i
bcme n software and h.nrdwa
nnnnnn

hniarc h

is article

introduc: -sync l B P) el as a candidate for this rol
gives resu 1 antify l'l' cy both in im 1 ementing high-level language
t' ures a d a]g s, as well a: b:ing implemented in hardware.

o
Leslie €. Yaliant

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

'YOU SHALL

' NOTPASS

Barriers

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Barrier

Synchronize a number of processes.

How would you

implement this using
Semaphores?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Barrier — 15t try

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

P1 P2 [... |Pn
init barrier = 0; volatile count = ©
pre Race Condition !
barrier count++ %CQ

if (count==n) rel€y3e(barrier) ¢ < <

acquir‘e(bar*r"ier‘gl‘

post e Some wait forever!

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Barrier

Synchronize a number (n) of processes.
Semaphore barrier. Integer count.

Invariants
«Each of the processes eventually
reaches the acquire statement”

Pl
«The barrier will be opened if and
init barrier = @; volatile cconlyifall processes have reached the
barrier"
pre « o
barrier count++ éﬁ «count provides the number of
. . rocesses that have passed the
if (count==n) rel@ e(barrier) Earrier-- - "
acquir‘e(bar*r"iegQ‘
«when all processes have reached
post c o the barrier then all waiting processes

can continue" (violated)

spcl.inf.ethz.ch

ETH:zurich

Recap: Race Condition

X++

reg = X
reg =reg +1
X =reg

d Ss9204d

v
Race

write x

write x

Condition

-
O

O

2

o

reg = X

reg =reg-1
X =reg

YW @spcl_eth

29

spcl.inf.ethz.ch 5o o
w osien ETHZzUrich

With Mutual Exclusion

o
o Critical
CritiFaI o X o Section
Section & @)
O
o 5
X++ wn
j@)
- X ~<CICETERETEREETEREETEREY
res read x
reg =reg +1 _
write x
X= reg >
.......................... ' rep = x X--
read x &=
Mutual write x reg=reg-1
Exclusion € eeannnnnnnnennnnereeeas X=reg
‘1' v v

30

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Barrier

Synchronize a number (n) of processes.
Semaphores barrier, mutex. Integer count.

Pl P2 ... Pn
init mutex = 1; barrier = 0; count = ©
pre
barrier acquire(mutex)
count++
release(mutex)
if (count==n) release(barrier) < & a
acqu1re(barr}er) turnstile
release(barrier)
post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Reusable Barrier. 1st trial.

Pl ‘ - ‘Pn
init mutex = 1; barrier = 0; count = 0

pre Dou you see
the problem?

barrier acquire(mutex)
count++
release(mutex)
if (count==n) release(barrier) Race Condition !

acquire(barrier)
release(barrier)

acquire(mutex)

count--
release(mutex) Race Condition !
if (count==0) acquire(barrier)

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Reusable Barrier. 1st trial.

Pl ‘ “. . LPn
init mutex = 1; barrier = 0; count = ©
pre
barrier acquire(mutex)
count++ .
release(mutex) Invariants

if (count==n) release(barrier) «Only when all processes have

) i reached the turnstyle it will be
acquire(barrier)

] opened the first time" <«
release(barrier)
«When all processes have run
acquire(mutex) through the barrier then count = 0"
count--
release(mutex) «When all processes have run

through the barrier then barrier = 0"

if (count==0) acquire(barrier) .
(violated)

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

lllustration of the problem: scheduling scenario

barrier =0
count++
|
(count=1)
> count++
> count++
|
barrier =1 count=3 - release(barrier)
. . <€
barrier =2 count=3 - release(barrier)
<€

turnstile(barrier)

>

turnstile(barrier)

turnstile(barrier)

barrier =2

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Reusable Barrier. 2nd trial.

Pl ‘ ... ‘Pn
init mutex = 1; barrier = 0; count = 0
pre o Dou you see
. . the problem?
barrier acquire(mutex)
count++
if (count==n) release(barrier)
release(mutex)

Process can Pass

. . other processes!
acquire(barrier)

release(barrier)

acquire(mutex)

count--

if (count==0) acquire(barrier)
release(mutex)

post

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Reusable Barrier. 2nd trial.

Pl ‘ ‘Pn
init mutex = 1; barrier = 0; count = O
pre
barrier acquire(mutex) ///\
count++
if (count==n) release(barrier) Invariants
release(mutex)

«When all processes have passed the
barrier, it holds that barrier = 0"

acquire(barrier)
release(barrier) « Even when a single process has
. passed the barrier, it holds that
acquire(mutex) barrier = 0» (violated)
count--
if (count==0) acquire(barrier)
release(mutex)
post

spcl.inf.ethz.ch 5o o
w osien ETHZzUrich

Solution: Two-Phase Barrier

init mutex=1; barrierl=0; barrier2=1; count=0
barrier acquire(mutex)
count++;

if (count==n)
acquire(barrier2); release(barrierl)
release(mutex)

acquire(barrierl); release(barrierl);
// barrierl = 1 for all processes, barrier2 = 0 for all processes
acquire(mutex)
count--;
if (count==0)
acquire(barrierl); release(barrier2)
signal(mutex)

acquire(barrier2); release(barrier)
// barrier2 = 1 for all processes, barrierl = 0 for all processes

Of course, this is very slow in practice, see http://www.spiral.net/software/barrier.html for a specialized fast barrier for x86! 37

http://www.spiral.net/software/barrier.html

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Lesson Learned ?

= Semaphore, Rendevouz and Barrier:

= Concurrent programming is prone to errors in reasoning.

= A naive approach with trial and error is close-to impossible.
= Ways out:

= |dentify invariants in the problem domain, ensure they hold for your implementation
= |dentify and apply established patterns
= Use known good libraries (like in the Java API)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Summary

Locks are not enough: we need methods to wait for events / notifications
Semaphores

Rendezvous and Barriers

Next:
Producer-Consumer Problem
Monitors and condition variables

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer Consumer Pattern

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer Pattern

Producer thread Consumer thread

TO > 11

TO computes X and passes it to T1
Tl uses X

Is synchronization for X needed?
No because, at any point in time only one thread accesses X
we, however, need a synchronized mechanism to pass X from TOto T1

v omion [ETHZzUrich
Producer / Consumer Pattern

Fundamental parallel programming pattern
Can be used to build data-flow parallel programs
E.g, pipelines:

30 billion (30 * 10°) transistors,
programmable at fine-grain!

TO > 71 —> T2

Analyzing tweets using Cloud Dataflow
pipeline templates

both producer
and consumer

By Amy Unruh, Developer Relations Engineer

This post describes how to use Google Cloud Dataflow templates to easily launch Dataflow
pipelines from a Google App Engine (GAE) app, in order to support MapReduce jobs and many
other data processing and analysis tasks.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Pipeline Node

while (true) {
input = gq_in.dequeue();
output = do_something(input);
g _out.enqueue(output)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queues

Producer

q.enqueue(x,)

q.enqueue(x,) Consumer

SN o o l

g.dequeue() - x,
g.dequeue() - x,

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Multiple Producers and Consumers

Producers
p - enqueue c
Q Queue
/ D
dequeue
R

Consumers

onien ETH zUrich

Bounded FIFO as Circular Buffer

leoi forrforr| | | | | | | [emafenu| + wrap around semantics
out in

|
=

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queue implementation

ﬂout=4 ﬂjn=7
I I I I IaIbICI I ﬂin:l ﬂout=4
< > el | | [a|bp]c]e]

count=3

Enqueue d — < count=5
|J» [Jout=4 Dequeue - a
I I b I I I ﬂin=1 ﬂout=5

>

count = Lel [[fafo]cld]

—_— <

Enqueue e count=4

ﬂin:l ﬂout=4
Lel | | Jafeleld]
<€

count=5

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queue implementation

class Queue { public synchronized void enqueue(long item) {
private int inj; // next new element buffer[in] = item;
private int out; // next element in = next(in);
private int size; // queue capacity }
private long[] buffer; public synchronized long dequeue() {
item = buffer[out];
Queue(int size) { out = next(out);
this.size = size; return item;
in = out = 0; }
buffer = new long[size];
}
private int next(int i) { What if we try to
return (i + 1) % size; 1. dequeue from an empty queue?

¥ 2. enqueue to a full queue?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queues: helper functions

public void doEnqueue(long item) { public long doDequeue() {
buffer[in] = item; long item = buffer[out];
in = next(in); out = next(out);

} return item;

}

public boolean isFull() { public boolean isEmpty() {
return (in+l) % size == out; } FEEUR S == Ol

}

inﬂ ﬂOUt inmout
(I T T A 1 1] L.t [1 [11 1]

full: one element not usable.

Still it has a benefit to not use a counter variable. Any idea
what this benefit could be?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queues

public synchronized void enqueue(long item) { puglii VC[’%d]dOE(‘gueue(long ttem)
. . uffer[in] = item;
while (1SFUI1()) in = next(in);
y // wait }
doEnqueue(item); public boolean isFull() {
} return (in+l) % size == out;
}
public synchronized long dequeue() { public long doDequeue() {

long item = buffer[out];

while (isEmpty()) out = next(out);
; // wait : return item;
return doDequeue(); public boolean isEmpty() {

return in == out;

Do you see the |
problem?
- Blocks forever
infinite loops with a lock held ...

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Producer / Consumer queues using sleep()

public void enqueue(long item) throws InterruptedException {
while (true) {
synchronized(this) {

if (1isFull()) {

What is the proper value for the timeout?
|deally we would like to be notified when

doEnqueue(item); the change happens!
return; When is that?
}
}
Thread.sleep(timeout); // sleep without lock!

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queues with semaphores

import java.util.concurrent.Semaphore;

class Queue {
int in, out, size;
long buf[];
Semaphore nonEmpty, nonFull, manipulation;

Queue(int s) {
size = s;
buf = new long[size];
in = out = 0O;
nonEmpty = new Semaphore(0); // use the counting feature of semaphores!
nonFull = new Semaphore(size); // use the counting feature of semaphores!
manipulation = new Semaphore(1l); // binary semaphore

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Producer / Consumer queues with semaphores, correct?
Do you see the

problem?
void enqueue(long x) { long dequeue() {
long x=0;
try { try {
manipulation.acquire(); manipulation.acquire();
nonFull.acquire(); nonEmpty.acquire();
buf[in] = Xx; X = buf[out];
in = (in+l) % size; out = (out+l) % size;
} }
catch (InterruptedException ex) {} catch (InterruptedException ex) {}
finally { finally {
manipulation.release(); manipulation.release();
nonEmpty.release(); nonFull.release();
} }
} return Xx;

spcl.inf.ethz.ch 5o o
w osien ETHZzUrich

Deadlock!

requires/ Consumer \ovmed by
nonEmpty manipulation

ownedby\ Producer /requires

54

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Producer / Consumer queues with semaphores

void enqueue(long x) { long dequeue() {
long x=0;
try { try {
nonFull.acquire(); nonEmpty.acquire();
manipulation.acquire(); manipulation.acquire();
buf[in] = x; X = buf[out];
in = next(in); out = next(out);
} }
catch (InterruptedException ex) {} catch (InterruptedException ex) {}
finally { finally {
manipulation.release(); manipulation.release();
nonEmpty.release(); nonFull.release();
} }
} return Xx;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Why are semaphores insufficient?

Semaphores are unstructured. Correct use requires high level of discipline.
Easy to introduce deadlocks with semaphores.

We need: a lock that we can temporarily escape from when waiting on a
condition.

e EETHzUrich

Monitors

57

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Monitors

Monitor:
abstract data structure equipped with a set
of operations that run in mutual exclusion.

Invented by Tony Hoare and Per Brinch
Hansen (cf. Monitors: An Operating System
Structuring Concept, Tony Hoare, 1974)

Tony Hoare Per Brinch Hansen
(1934-today) (1938-2007)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Monitors vs. Semaphores/Unbound Locks

mn DD

Code

monitor monitor

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer queues

public void synchronized enqueue(long item) {
"while (isFull()) wait"
doEnqueue(item);

} The mutual exclusion part is
nicely available already.
But: while the buffer is full
we need to give up the lock,

how?
public long synchronized dequeue() { °

"while (isEmpty()) wait"
return doDequeue();

¥

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Monitors

Monitors provide, in addition to mutual exclusion, a mechanism to check
conditions with the following semantics:

If a condition does not hold

= Release the monitor lock

= Wait for the condition to become true

= Signhaling mechanism to avoid busy-loops

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Monitors in Java

Uses the intrinsic lock (synchronized) of an object

+wait / notify / notifyAll:
wait() —the currentthread waits until it is signaled (via notify)

notify() —wakes up one waiting thread (an arbitrary one)
notifyAll() — wakes up all waiting threads

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer with monitor in Java

class Queue {
int in, out, size;
long buf[];

Queue(int s) {
size = s;
buf = new long[size];
in = out = 0;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer with monitor in Java

synchronized void enqueue(long x) { synchronized long dequeue() { Wouldn't an if be
long x; sufficient?
while (isFull()) while (isEmpty())
try { try {
wait(); wait();
} catch (InterruptedException e) { } } catch (InterruptedException e) { }
doEnqueue(x); x = doDequeue();
notifyAll(); notifyAll();
} return Xx;
} (Why) can't we

use notify()?

spcl.inf.ethz.ch oo o
@spcl_eth E'HZUFICh

IMPORTANT TO KNOW JAVA MONITOR
IMPLEMENTATION DETAILS

spcl.inf.ethz.ch

Thread States in Java

waiting state with
specified waiting
time, e.g,. sleep

NEW

thread has

TERMINATED

o

thread has
finished execution

TIMED_WAIT

not yet started /\5 RUNNABLE

ETH:zurich

YW @spcl_eth

Spaced repetition

From Wikipedia, the free encyclopedia

Spaced repetition is a learning technique that incorporates increasing intervals of time between subsequent review of previously learned material in order to exploit
the psychological spacing effect. Alternative names include spaced rehearsal, expanding rehearsal, graduated intervals, repetition spacing, repetition scheduling,
spaced retrieval and expanded retrieval.l’]

WAITING

notify

thread is waiting for notifyAll

join/ @ condition or a join
wait

monitor

obtained
BLOCKED

thread is waiting for

entry to monitor lock
thread is runnable,

may or may not be
currently scheduled
by the OS

monitor
not yet free

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Monitor Queues

method call -
‘.................*...................)

waiting entry

>

notification

waiting condition

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Exact Semantics

Important to know for the programmer (you): what happens upon notification?
Priorities?
signal and wait

signaling process exits the monitor (goes to waiting entry queue)
signaling process passes monitor lock to signaled process

signal and continue
signaling process continues running
signaling process moves signaled process to waiting entry queue

other semantics: signal and exit, sighal and urgent wait ...

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Why this is important? Let's try this implementing a semaphore:

class Semaphore {
int number = 1; // number of threads allowed in critical section

synchronized void enter() ({
if (number <= 0)

try { wait(); } catch (InterruptedException e) { };

number--;
}
synchronized void exit() {

number++;

if (number > 0)

notify();
} Looks good, doesn't it?
But there is a problem.

Do you know which?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Java Monitors = signal + continue

R) synchronized void enter() { Scenario:
if (number <= @) 1. Process P has previously entered the semaphore and
try { wait(); } Q) decreased number to 0.
catch (InterruptedException e) { };

2. Process Q sees number = 0 and goes to waiting list.

number--;
’ 3. P is executing exit. In this moment process R wants to

enter the monitor via method enter.

synchronized void exit() { 4. P signals Q and thus moves it into wait entry list (signal

P | number++; and continue!). P exits the function/lock.
if (number > 0) 5. R gets entry to monitor before Q and sees the number =1
notify(); 6. Q continues execution with number = 0!

} Inconsistency!

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The cure — a while loop.

synchronized void enter() { synchronized void exit() {
while (number <= 0) number++;
try { wait(); } if (number > 0)
catch (InterruptedException e) { }; notify();
number--; }
}

If, additionally, different threads evaluate different conditions, the notification has to
be a notifyAll. In this example it is not required.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Something different: Java Interface Lock

Intrinsic locks ("synchronized") with objects provide a good abstraction and
should be first choice

Limitations

= one implicit lock per object

= are forced to be used in blocks
= Jimited flexibility

Java offers the Lock interface for more flexibility (e.g., lock can be polled).

final Lock lock = new ReentrantLock();

spcl.inf.ethz.ch

Condition interface

Java Locks provide conditions that can be instantiated

Condition notFull = lock.newCondition();

Java conditions offer

.await() — the current thread waits until condition is signaled
.signal() — wakes up one thread waiting on this condition
.signalAll() — wakes up all threads waiting on this condition

YW @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Condition interface

- Conditions are always associated with a lock
lock.newCondition()

.await()
— called with the lock held

— atomically releases the lock and waits until thread is signaled
— when returns, it is guaranteed to hold the lock

— thread always needs to check condition

.signal{,All}() — wakes up one (all) waiting thread(s)
— called with the lock held

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer with explicit Lock

class Queue{
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s;
buf = new long[size];

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer / Consumer with Lock

void enqueue(long x){ long dequeue() {
long x;
lock.lock(); lock.lock();
while (isFull()) while (isEmpty())
try { try {
notFull.await(); notEmpty.await();
} catch (InterruptedException e){} } catch (InterruptedException e){}
doEnqueue(x); x = doDequeue();
notEmpty.signal(); notFull.signal();
lock.unlock(); lock.unlock();
} return Xx;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The Sleeping Barber Variant (E. Dijkstra)

Disadvantage of the solution: nonfull and nonempty signal will be sent in any
case, even when no threads are waiting.

Client

’,,
Sleeping barber variant: additional counters %ﬁé‘fi‘;‘lﬁ
for checking if processes are waiting: =

m < 0 buffer full & -m producers (clients) are waiting
n < 0 © buffer empty & -n consumers (barbers) are waiting

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer Consumer, Sleeping Barber Variant

class Queue{
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
int n = @; final Condition notFull = lock.newCondition();
int m; final Condition notEmpty = lock.newCondition();
Queue(int s) { sicl cf. slide 27
size = s; m=size-1;
buf = new long[size];

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Producer Consumer, Sleeping Barber Variant

void enqueue(long x) { long dequeue() {
long x;
lock.lock(); lock.lock();
m--; if (m<O) n--; if (n<o)
while (isFull()) while (isEmpty())
try { notFull.await(); } try { notEmpty.await(); }
catch(InterruptedException e){} catch(InterruptedException e){}
doEnqueue(x); X = doDequeue();
n++; m++;
if (n<=0) notEmpty.signal(); if (m<=0) notFull.signal();
lock.unlock(); lock.unlock();
return Xx;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Guidelines for using condition waits

* Always have a condition predicate

* Always test the condition predicate:
= pefore calling wait
= after returning from wait

* Always call wait in a loop
* Ensure state is protected by lock associated with condition

spcl.inf.ethz.ch

YW @spcl_eth

java.concurrent.util

Java (luckily for us) provides many common synchronization objects:
 Semaphores

e Barriers (CyclicBarrier)
* Producer / Consumer queues
 and many more... (Latches, Futures, ...)

ETH:zurich

