
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Beyond Locks II: Semaphore, Barrier, Producer-/
Consumer, Monitors

spcl.inf.ethz.ch

@spcl_eth

2

Another (historic) example: from the Java standard library

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0, len, this.value, this.count);

}

synchronized getChars(int x, int y, char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

Do you find the two
problems?

spcl.inf.ethz.ch

@spcl_eth

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0, len, this.value, this.count);

}

synchronized getChars(int x, int y, char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

3

Another (historic) example: from the Java standard library
Problem #1:

 Lock for sb is not held between calls
to sb.length and sb.getChars

 sb could get longer

 Would cause append to not append
whole string
 The semantics here can be discussed!

Definitely an issue if sb got shorther 

Problem #2:

 Deadlock potential if two threads try
to append “crossing” StringBuffers, just
like in the bank-account first example

 x.append(y); y.append(x);Do you find the two
problems?

Amy Williams, William Thies, and Michael D. Ernst: Static Deadlock Detection for Java Libraries, ECOOP’05 (for deadlock)

spcl.inf.ethz.ch

@spcl_eth

 Not easy to fix both problems without extra overheads:
 Do not want unique ids on every StringBuffer

 Do not want one lock for all StringBuffer objects

 Actual Java library: initially fixed neither (left code as is; changed javadoc)
 Up to clients to avoid such situations with own protocols

 Today: two classes StringBuffer (claimed to be synchronized) and
StringBuilder (not synchronized)

4

Fix?

spcl.inf.ethz.ch

@spcl_eth

Code like account-transfer and string-buffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects
 Can document a fixed order among types
 Example: “When moving an item from the hashtable to the work queue, never try to

acquire the queue lock while holding the hashtable lock”

2. Easier case: objects are in an acyclic structure
 Can use the data structure to determine a fixed order
 Example: “If holding a tree node’s lock, do not acquire other tree nodes’ locks unless

they are children in the tree”

5

Perspective

spcl.inf.ethz.ch

@spcl_eth

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But the Deadlock is the dominant problem of reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvation denotes the repeated but unsuccesful attempt of a recently
unblocked process to continue its execution.

6

Significance of Deadlocks

spcl.inf.ethz.ch

@spcl_eth

Semaphores

7

spcl.inf.ethz.ch

@spcl_eth

• Locks provide means to enforce atomicity via mutual exclusion

• They lack the means for threads to communicate about changes
 e.g., changes in the state

• Thus, they provide no order and are hard to use
 e.g., if threads A and B lock object X, it is not determined who comes first

• Example: producer / consumer queues

8

Why do we need more than locks?

spcl.inf.ethz.ch

@spcl_eth

Semaphore Edsger W. Dijkstra 1965

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

Se|ma|phor, das od. der; -s, -e [zu griech. σεμα = Zeichen u. φoρos = tragend]:
Signalmast mit beweglichen Flügeln.

9

spcl.inf.ethz.ch

@spcl_eth

Semaphore: integer-valued abstract data type S with some initial value s≥0 and
the following operations*

acquire(S)
{

wait until S > 0
dec(S)

}

release(S)
{

inc(S)
}

10

Semaphore: Semantics

* Dijkstra called them P (probeeren), V (vrijgeven), also often used: wait and signal

acquire

release

(protected)

at
o

m
ic

at
o

m
ic

spcl.inf.ethz.ch

@spcl_eth

sem_mutex = Semaphore(1);

lock mutex := sem_mutex.acquire()
only one thread is allowed into the critical section

unlock mutex := sem_mutex.release()
one other thread will be let in

Semaphore number:
1 → unlocked

0 → locked

x>0 → x threads will be let into “critical section”

11

Building a lock with a semaphore

spcl.inf.ethz.ch

@spcl_eth

 Execute in parallel: x = (aT * d) * z
 a and d are column vectors

 x, z are scalar

 Assume each vector has 4 elements
 x = (a1*d1 + a2*d2 + a3*d3 + a4*d4) * z

 Parallelize on two processors (using two threads A and B)
 xA = a1*d1 + a2*d2

 xB = a3*d3 + a4*d4

 x = (xA + xB) * z

 Which synchronization is needed where?
 Using locks?

 Using semaphores?

12

Example: scaled dot product

spcl.inf.ethz.ch

@spcl_eth

 Two processes P and Q executing code.

 Rendezvouz: locations in code, where P and Q wait for the other
to arrive. Synchronize P and Q.

13

Rendezvous with Semaphores

P

Q

P

Q

How would you implement
this using Semaphores?

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

14

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous ? ?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

15

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
?

acquire(P_Arrived)
?

post

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Semaphores P_Arrived and Q_Arrived

16

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

Dou you find
the problem?

spcl.inf.ethz.ch

@spcl_eth

17

Deadlock

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous acquire(Q_Arrived)
release(P_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

P_ArrivedQ_Arrived

owned byrequires

owned by requires

P

Q

spcl.inf.ethz.ch

@spcl_eth

18

Rendezvous with Semaphores
Wrong solution with Deadlock

pre

pre acquire

P

Q release

releaseacquire

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q_Arrived

19

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
acquire(Q_Arrived)

acquire(P_Arrived)
release(Q_Arrived)

post

spcl.inf.ethz.ch

@spcl_eth

Consider a process list QS associated with semaphore S

acquire(S)
{if S > 0 then

dec(S)
else

put(QS, self)
block(self)

end }

release(S)
{if QS == Ø then

inc(S)
else

get(QS, p)
unblock(p)

end }

20

Implementing Semaphores without Spinning (blocking queues)

acquire

release

(protected)

10000S

QS

at
o

m
ic

at
o

m
ic

spcl.inf.ethz.ch

@spcl_eth

P first

Q first

21

Scheduling Scenarios

releasepre acquire post

pre acquire post

releasepre acquire post

releasepre acquire post

P

Q

P

Q

time

time

release

release signals (arrow)
acquire may wait (filled box)

spcl.inf.ethz.ch

@spcl_eth

Synchronize Processes P and Q at one location (Rendezvous)

Assume Semaphores P_Arrived and Q_Arrived

22

Rendezvous with Semaphores

P Q

init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived)
acquire(Q_Arrived)

release(Q_Arrived)
acquire(P_Arrived)

post

spcl.inf.ethz.ch

@spcl_eth

P first

Q first

23

That’s even better.

releasepre acquire post

releasepre acquire post

releasepre acquire post

releasepre acquire post

P

Q

P

Q

release signals (arrow)
acquire may wait (filled box)

spcl.inf.ethz.ch

@spcl_eth

 Assume now vectors with 1 million entries on 10,000 threads
 Very common! (over the weekend, we ran >1M threads on 27,360 GPUs)

 How would you implement that?

 Semaphores, locks?

 Time for a higher-level abstraction!
 Supporting threads in bulk-mode

Move in lock-step

 And enabling a “bulk-synchronous parallel” (BSP) model
The full BSP is more complex (supports distributed memory)

24

Back to our dot-product

spcl.inf.ethz.ch

@spcl_eth

Barriers

25

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number of processes.

26

Barrier

How would you
implement this using
Semaphores?

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphore barrier. Integer count.

27

Barrier – 1st try

P1 P2 ... Pn

init barrier = 0; volatile count = 0

pre ...

  

barrier count++
if (count==n) release(barrier)
acquire(barrier)

post ...

Race Condition !

Some wait forever!

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphore barrier. Integer count.

28

Barrier

P1 P1 ... Pn

init barrier = 0; volatile count = 0

pre ...

  

barrier count++
if (count==n) release(barrier)
acquire(barrier)

post ...

Race Condition !

Deadlock !

Invariants
«Each of the processes eventually
reaches the acquire statement"

«The barrier will be opened if and
only if all processes have reached the
barrier"

«count provides the number of
processes that have passed the
barrier" (violated)

«when all processes have reached
the barrier then all waiting processes
can continue" (violated)

spcl.inf.ethz.ch

@spcl_eth

29

Recap: Race Condition

P
ro

cess P

P
ro

cess Q

x

read x

reg = x
reg = reg +1
x = reg

write x
write x

read x

Shared
Variable

Race Condition

reg = x
reg = reg -1
x = reg

x++ x--

spcl.inf.ethz.ch

@spcl_eth

30

With Mutual Exclusion

P
ro

cess P

P
ro

cess Q

x

read x

write x

write x

read x

Critical
Section

Critical
Section

reg = x
reg = reg +1
x = reg

reg = x
reg = reg -1
x = reg

x++

x--

Mutual
Exclusion

spcl.inf.ethz.ch

@spcl_eth

Synchronize a number (n) of processes.

Semaphores barrier, mutex. Integer count.

31

Barrier

P1 P2 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

  

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)
acquire(barrier)
release(barrier)

post ...

turnstile

spcl.inf.ethz.ch

@spcl_eth

32

Reusable Barrier. 1st trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

 

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--

release(mutex)
if (count==0) acquire(barrier)

post ...

Race Condition !

Race Condition !

Dou you see
the problem?

spcl.inf.ethz.ch

@spcl_eth

33

Reusable Barrier. 1st trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

 

barrier acquire(mutex)
count++

release(mutex)
if (count==n) release(barrier)

acquire(barrier)
release(barrier)

acquire(mutex)
count--

release(mutex)
if (count==0) acquire(barrier)

post ...

Race Condition !

Race Condition !

Invariants

«Only when all processes have
reached the turnstyle it will be
opened the first time"

«When all processes have run
through the barrier then count = 0"

«When all processes have run
through the barrier then barrier = 0"
(violated)

spcl.inf.ethz.ch

@spcl_eth

34

Illustration of the problem: scheduling scenario

count++

count=3  release(barrier)

count++

count=3  release(barrier)

count++

(count=1)

barrier = 0

barrier = 2

barrier = 1

turnstile(barrier)

turnstile(barrier)

turnstile(barrier)

barrier = 2

spcl.inf.ethz.ch

@spcl_eth

35

Reusable Barrier. 2nd trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

 

barrier acquire(mutex)
count++
if (count==n) release(barrier)

release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
if (count==0) acquire(barrier)

release(mutex)

post ...

Process can pass
other processes!

Dou you see
the problem?

spcl.inf.ethz.ch

@spcl_eth

36

Reusable Barrier. 2nd trial.

P1 ... Pn

init mutex = 1; barrier = 0; count = 0

pre ...

 

barrier acquire(mutex)
count++
if (count==n) release(barrier)

release(mutex)

acquire(barrier)
release(barrier)

acquire(mutex)
count--
if (count==0) acquire(barrier)

release(mutex)

post ...

Invariants

«When all processes have passed the
barrier, it holds that barrier = 0"

« Even when a single process has
passed the barrier, it holds that
barrier = 0» (violated)

spcl.inf.ethz.ch

@spcl_eth

37

Solution: Two-Phase Barrier

init mutex=1; barrier1=0; barrier2=1; count=0

barrier acquire(mutex)
count++;
if (count==n)

acquire(barrier2); release(barrier1)
release(mutex)

acquire(barrier1); release(barrier1);
// barrier1 = 1 for all processes, barrier2 = 0 for all processes
acquire(mutex)
count--;
if (count==0)

acquire(barrier1); release(barrier2)
signal(mutex)

acquire(barrier2); release(barrier2)
// barrier2 = 1 for all processes, barrier1 = 0 for all processes

Of course, this is very slow in practice, see http://www.spiral.net/software/barrier.html for a specialized fast barrier for x86!

http://www.spiral.net/software/barrier.html

spcl.inf.ethz.ch

@spcl_eth

 Semaphore, Rendevouz and Barrier:

 Concurrent programming is prone to errors in reasoning.

 A naive approach with trial and error is close-to impossible.

 Ways out:
 Identify invariants in the problem domain, ensure they hold for your implementation

 Identify and apply established patterns

 Use known good libraries (like in the Java API)

38

Lesson Learned ?

spcl.inf.ethz.ch

@spcl_eth

Locks are not enough: we need methods to wait for events / notifications

Semaphores

Rendezvous and Barriers

Next:

Producer-Consumer Problem

Monitors and condition variables

39

Summary

spcl.inf.ethz.ch

@spcl_eth

Producer Consumer Pattern

40

spcl.inf.ethz.ch

@spcl_eth

T0 computes X and passes it to T1

T1 uses X

Is synchronization for X needed?
No because, at any point in time only one thread accesses X

we, however, need a synchronized mechanism to pass X from T0 to T1

41

Producer / Consumer Pattern

T1T0

Producer thread Consumer thread

X

spcl.inf.ethz.ch

@spcl_eth

Fundamental parallel programming pattern

Can be used to build data-flow parallel programs

E.g, pipelines:

42

Producer / Consumer Pattern

T1T0 T2

both producer
and consumer

30 billion (30 * 109) transistors,
programmable at fine-grain!

spcl.inf.ethz.ch

@spcl_eth

while (true) {
input = q_in.dequeue();
output = do_something(input);
q_out.enqueue(output)

}

43

Pipeline Node

T

spcl.inf.ethz.ch

@spcl_eth

44

Producer / Consumer queues

q.enqueue(x1)
q.enqueue(x2)

...

q.dequeue() → x1

q.dequeue() → x2

...

Producer

Consumer

spcl.inf.ethz.ch

@spcl_eth

45

Multiple Producers and Consumers

enqueue

dequeue

Producers

Consumers

P

Q

R

C

D

spcl.inf.ethz.ch

@spcl_eth

46

Bounded FIFO as Circular Buffer

b[0] b[1] b[2] b[10] b[11] + wrap around semantics

inout

=

spcl.inf.ethz.ch

@spcl_eth

47

Producer / Consumer queue implementation

a b c

out = 4 in = 7

count = 3

a b c d

out = 4in = 0

count = 4

e a b c d

out = 4in = 1

count = 5

Enqueue d

Enqueue e

e a b c d

out = 4in = 1

count = 5

Dequeue → a

e a b c d

out = 5in = 1

count = 4

spcl.inf.ethz.ch

@spcl_eth

class Queue {
private int in; // next new element
private int out; // next element
private int size; // queue capacity
private long[] buffer;

Queue(int size) {
this.size = size;
in = out = 0;
buffer = new long[size];

}

private int next(int i) {
return (i + 1) % size;

}

48

Producer / Consumer queue implementation

public synchronized void enqueue(long item) {
buffer[in] = item;
in = next(in);

}

public synchronized long dequeue() {
item = buffer[out];
out = next(out);
return item;

}

What if we try to
1. dequeue from an empty queue?
2. enqueue to a full queue?

spcl.inf.ethz.ch

@spcl_eth

public void doEnqueue(long item) {
buffer[in] = item;
in = next(in);

}

public boolean isFull() {
return (in+1) % size == out;

}

public long doDequeue() {
long item = buffer[out];
out = next(out);
return item;

}
public boolean isEmpty() {

return in == out;
}

49

Producer / Consumer queues: helper functions

outin outin

full: one element not usable.
Still it has a benefit to not use a counter variable. Any idea
what this benefit could be?

spcl.inf.ethz.ch

@spcl_eth

public synchronized void enqueue(long item) {
while (isFull())

; // wait
doEnqueue(item);

}

50

Producer / Consumer queues

 Blocks forever

infinite loops with a lock held …

public synchronized long dequeue() {

while (isEmpty())
; // wait

return doDequeue();
} Do you see the

problem?

public void doEnqueue(long item) {
buffer[in] = item;
in = next(in);

}

public boolean isFull() {
return (in+1) % size == out;

}

public long doDequeue() {
long item = buffer[out];
out = next(out);
return item;

}
public boolean isEmpty() {

return in == out;
}

spcl.inf.ethz.ch

@spcl_eth

public void enqueue(long item) throws InterruptedException {

while (true) {

synchronized(this) {

if (!isFull()) {

doEnqueue(item);

return;

}

}

Thread.sleep(timeout); // sleep without lock!

}

}

51

Producer / Consumer queues using sleep()

What is the proper value for the timeout?
Ideally we would like to be notified when

the change happens!
When is that?

spcl.inf.ethz.ch

@spcl_eth

import java.util.concurrent.Semaphore;

class Queue {
int in, out, size;
long buf[];
Semaphore nonEmpty, nonFull, manipulation;

Queue(int s) {
size = s;
buf = new long[size];
in = out = 0;
nonEmpty = new Semaphore(0); // use the counting feature of semaphores!
nonFull = new Semaphore(size); // use the counting feature of semaphores!
manipulation = new Semaphore(1); // binary semaphore

}
}

52

Producer / Consumer queues with semaphores

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

try {
manipulation.acquire();
nonFull.acquire();
buf[in] = x;
in = (in+1) % size;

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonEmpty.release();

}
}

long dequeue() {
long x=0;
try {

manipulation.acquire();
nonEmpty.acquire();
x = buf[out];
out = (out+1) % size;

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonFull.release();

}
return x;

}
53

Producer / Consumer queues with semaphores, correct?
Do you see the

problem?

spcl.inf.ethz.ch

@spcl_eth

54

Deadlock!

Consumer

Producer

manipulationnonEmpty

owned byrequires

owned by requires

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

try {
nonFull.acquire();
manipulation.acquire();
buf[in] = x;
in = next(in);

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonEmpty.release();

}
}

long dequeue() {
long x=0;
try {

nonEmpty.acquire();
manipulation.acquire();
x = buf[out];
out = next(out);

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonFull.release();

}
return x;

}
55

Producer / Consumer queues with semaphores

spcl.inf.ethz.ch

@spcl_eth

Semaphores are unstructured. Correct use requires high level of discipline.

Easy to introduce deadlocks with semaphores.

We need: a lock that we can temporarily escape from when waiting on a
condition.

56

Why are semaphores insufficient?

spcl.inf.ethz.ch

@spcl_eth

Monitors

57

spcl.inf.ethz.ch

@spcl_eth

Monitor:
abstract data structure equipped with a set
of operations that run in mutual exclusion.

Invented by Tony Hoare and Per Brinch
Hansen (cf. Monitors: An Operating System
Structuring Concept, Tony Hoare, 1974)

58

Monitors

Tony Hoare
(1934-today)

Per Brinch Hansen
(1938-2007)

spcl.inf.ethz.ch

@spcl_eth

59

Monitors vs. Semaphores/Unbound Locks

shared shared

Code

monitor monitor

spcl.inf.ethz.ch

@spcl_eth

public void synchronized enqueue(long item) {
"while (isFull()) wait"
doEnqueue(item);

}

60

Producer / Consumer queues

The mutual exclusion part is
nicely available already.

But: while the buffer is full
we need to give up the lock,

how?
public long synchronized dequeue() {

"while (isEmpty()) wait"
return doDequeue();

}

spcl.inf.ethz.ch

@spcl_eth

Monitors provide, in addition to mutual exclusion, a mechanism to check
conditions with the following semantics:

If a condition does not hold

 Release the monitor lock

 Wait for the condition to become true

 Signaling mechanism to avoid busy-loops

61

Monitors

spcl.inf.ethz.ch

@spcl_eth

Uses the intrinsic lock (synchronized) of an object

+ wait / notify / notifyAll:
wait() – the current thread waits until it is signaled (via notify)

notify() – wakes up one waiting thread (an arbitrary one)

notifyAll() – wakes up all waiting threads

62

Monitors in Java

spcl.inf.ethz.ch

@spcl_eth

class Queue {

int in, out, size;

long buf[];

Queue(int s) {

size = s;

buf = new long[size];

in = out = 0;

}

...

}

63

Producer / Consumer with monitor in Java

spcl.inf.ethz.ch

@spcl_eth

synchronized void enqueue(long x) {

while (isFull())

try {

wait();

} catch (InterruptedException e) { }

doEnqueue(x);

notifyAll();

}

64

Producer / Consumer with monitor in Java

synchronized long dequeue() {

long x;

while (isEmpty())

try {

wait();

} catch (InterruptedException e) { }

x = doDequeue();

notifyAll();

return x;

} (Why) can't we
use notify()?

Wouldn't an if be
sufficient?

spcl.inf.ethz.ch

@spcl_eth

IMPORTANT TO KNOW JAVA MONITOR
IMPLEMENTATION DETAILS

65

spcl.inf.ethz.ch

@spcl_eth

66

Thread States in Java

thread has
not yet started

thread is runnable,
may or may not be
currently scheduled
by the OS

thread is waiting for
entry to monitor lock

thread is waiting for
a condition or a join

waiting state with
specified waiting
time, e.g,. sleep

notify
notifyAll

join/
wait

monitor
obtained

monitor
not yet free

TERMINATED

NEW

TIMED_WAIT WAITING

BLOCKED

thread has
finished execution

RUNNABLE

spcl.inf.ethz.ch

@spcl_eth

waiting entry

waiting condition

67

Monitor Queues

monitor

method call

notification

wait

spcl.inf.ethz.ch

@spcl_eth

Important to know for the programmer (you): what happens upon notification?
Priorities?

signal and wait
signaling process exits the monitor (goes to waiting entry queue)

signaling process passes monitor lock to signaled process

signal and continue
signaling process continues running
signaling process moves signaled process to waiting entry queue

other semantics: signal and exit, signal and urgent wait …

68

Exact Semantics

spcl.inf.ethz.ch

@spcl_eth

class Semaphore {
int number = 1; // number of threads allowed in critical section

synchronized void enter() {
if (number <= 0)

try { wait(); } catch (InterruptedException e) { };
number--;

}

synchronized void exit() {
number++;
if (number > 0)

notify();
}

}

69

Why this is important? Let's try this implementing a semaphore:

Looks good, doesn't it?
But there is a problem.
Do you know which?

spcl.inf.ethz.ch

@spcl_eth

synchronized void enter() {

if (number <= 0)

try { wait(); }

catch (InterruptedException e) { };

number--;

}

synchronized void exit() {

number++;

if (number > 0)

notify();

}

Scenario:

1. Process P has previously entered the semaphore and

decreased number to 0.

2. Process Q sees number = 0 and goes to waiting list.

3. P is executing exit. In this moment process R wants to

enter the monitor via method enter.

4. P signals Q and thus moves it into wait entry list (signal

and continue!). P exits the function/lock.

5. R gets entry to monitor before Q and sees the number = 1

6. Q continues execution with number = 0!

Inconsistency!

70

Java Monitors = signal + continue

P

Q

R

spcl.inf.ethz.ch

@spcl_eth

synchronized void enter() {

while (number <= 0)

try { wait(); }

catch (InterruptedException e) { };

number--;

}

71

The cure – a while loop.

synchronized void exit() {

number++;

if (number > 0)

notify();

}

If, additionally, different threads evaluate different conditions, the notification has to

be a notifyAll. In this example it is not required.

spcl.inf.ethz.ch

@spcl_eth

Intrinsic locks ("synchronized") with objects provide a good abstraction and
should be first choice

Limitations

 one implicit lock per object

 are forced to be used in blocks

 limited flexibility

Java offers the Lock interface for more flexibility (e.g., lock can be polled).

73

Something different: Java Interface Lock

final Lock lock = new ReentrantLock();

spcl.inf.ethz.ch

@spcl_eth

Java Locks provide conditions that can be instantiated

Java conditions offer

.await() – the current thread waits until condition is signaled

.signal() – wakes up one thread waiting on this condition

.signalAll() – wakes up all threads waiting on this condition

74

Condition interface

Condition notFull = lock.newCondition();

spcl.inf.ethz.ch

@spcl_eth

→ Conditions are always associated with a lock
lock.newCondition()

.await()
– called with the lock held

– atomically releases the lock and waits until thread is signaled

– when returns, it is guaranteed to hold the lock

– thread always needs to check condition

.signal{,All}() – wakes up one (all) waiting thread(s)
– called with the lock held

75

Condition interface

spcl.inf.ethz.ch

@spcl_eth

class Queue{
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s;
buf = new long[size];

}

...

}

76

Producer / Consumer with explicit Lock

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x){

lock.lock();
while (isFull())

try {
notFull.await();

} catch (InterruptedException e){}
doEnqueue(x);
notEmpty.signal();
lock.unlock();

}

long dequeue() {
long x;
lock.lock();
while (isEmpty())

try {
notEmpty.await();

} catch (InterruptedException e){}
x = doDequeue();
notFull.signal();
lock.unlock();
return x;

}

77

Producer / Consumer with Lock

spcl.inf.ethz.ch

@spcl_eth

Disadvantage of the solution: nonfull and nonempty signal will be sent in any
case, even when no threads are waiting.

Sleeping barber variant: additional counters
for checking if processes are waiting:

𝑚 ≤ 0 ⇔ buffer full & -m producers (clients) are waiting

𝑛 ≤ 0 ⇔ buffer empty & -n consumers (barbers) are waiting

Barber

78

The Sleeping Barber Variant (E. Dijkstra)

Client

spcl.inf.ethz.ch

@spcl_eth

class Queue{
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
int n = 0; final Condition notFull = lock.newCondition();
int m; final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s; m=size-1;
buf = new long[size];

}
...
}

79

Producer Consumer, Sleeping Barber Variant

sic! cf. slide 27

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

lock.lock();
m--; if (m<0)

while (isFull())
try { notFull.await(); }
catch(InterruptedException e){}

doEnqueue(x);
n++;
if (n<=0) notEmpty.signal();
lock.unlock();

}

long dequeue() {
long x;
lock.lock();
n--; if (n<0)

while (isEmpty())
try { notEmpty.await(); }
catch(InterruptedException e){}

x = doDequeue();
m++;
if (m<=0) notFull.signal();
lock.unlock();
return x;

}

80

Producer Consumer, Sleeping Barber Variant

spcl.inf.ethz.ch

@spcl_eth

• Always have a condition predicate

• Always test the condition predicate:
 before calling wait

 after returning from wait

• Always call wait in a loop

• Ensure state is protected by lock associated with condition

81

Guidelines for using condition waits

spcl.inf.ethz.ch

@spcl_eth

Java (luckily for us) provides many common synchronization objects:

• Semaphores

• Barriers (CyclicBarrier)

• Producer / Consumer queues

• and many more... (Latches, Futures, ...)

82

java.concurrent.util

