ETHzurich

Linf.ethz.ch
v omoen DINFK

TORSTENMOEFLER
Parallel Programming
Beyond Locks I,I

EU ministers commit to digitising Europe
with high-performance computing power

Ministers from seven European
countries (France, Germany, Italy,
Luxembourg, Netherlands, Portugal
and Spain) have signed in Rome a
declaration to support the next

. E .
infrastructures, a European project
of the size of Airbus in the 1990s
and of Galileo in the 2000s.

They plan to establish EuroHPC for acquiring
and deploying an integrated world-class high-
performanc ing infrastructure
capable of g least 1018 kalculations per
second (so-called exascale computers). This will be available across the EU for
scientific communities, industry and the public sector, no matter where the users
are located.

European Processor Initiative

Andrus Ansip, European Commission Vice-President for the Digital Single Market
welcomed this important step: "High-performance computing is moving towards
its next frontier - more than 100 times faster than the fastest machines currently
available in Europe. But not all EU countries have the capacity to build and
maintain such infrastructure, or to develop such technologies on their own. If we
stay dependent on others for this critical resource, then we risk gelting
technologically locked’, delayed or deprived of siralegic know-how. Europe needs
integrated world-class capability in supercomputing to be ahead in the global
race. Today's declaration is a great step forward. | encourage even more EU
countries to engage in this ambitious endeavour”. See full speech by Vice-
President Ansip at the Digital Day in Rome.

High-performance computing (HPC) involveqthousands of processorsworking in
parallel to analyse billions of pieces of data in real time. HPC allows to design
and new drugs and simulate their effects, and provide faster diagnosis, better
treatments and personalised health care. It can make our communications and

v aswien ETHZzirich

Another (historic) example: from the Java standard library

class StringBuffer {
private int count;
private char[] value ;

A
synchronized append(StringBuffer sb) {
int len = sb.length ();

if(this .count + len > this.value.length)
this .expands A § K

sb.getChars (0, len, this.value , this.count); @ m

S —— |
} SAID NO ONE EVER™

synchronized getChars (int x,int vy, char|] a,int z){

pd ~ Ve ~ ~ VAN Ve ~

2Al Bhg wvalue [xy ¥ ET O A OOAOOEI C A

Do you find the two
problems?

v awien ETHZzirich

Another (historic) example: from the Java standard library
Problem #1.:

A Lock forsb is not held between calls
to sb.length andsb.getChars

class StringBuffer {
private int count;
private char[] value ;

A A sb could get longer
synchronized append(StringBuffer sb) { A Would causeppendto not append
intlen = sblength (; whole string
If(this .count + len > this.value.length) A The semantics here can be discussed!
this .expands A & K Definitely an issue gb got shortherJ
sb.getChars (0, len, this.value , this.count);
}
Problem #2:
synchronized —getChars (int X, int y,char] &, Int 2){ A peadlock potential if two threads try
2 Al Bhig .value [x.. y]into a starting at ze G2 I LILIS Y IQStrt'n@BN@réjésﬁ
} J like in the bankaccount first example
Do you find the two A x.append (y); y.append (X);
problems?

Amy Williams, Williarfthie€ YR aAOKI St 5&® 9Nyady {dFrGdA0 5SIRt201 5SGSOGA2y F2NIWHGlI [AONINASAZ 9/ hhtQnp 6F2N

v awien ETHZzirich

Fix?

A Not easy to fix both problems without extra overheads:
A Do not want unique ids on eveBtringBuffer
A Do not want one lock for aBtringBuffer objects

A Actual Java library: initially fixed neither (left code as is; changaeadod

A Up to clients to avoid such situations with own protocols

A Today: two classeStringBuffer(claimed to be synchronized) and
StringBuilder(not synchronized)

v awien ETHZzirich

Perspective

Code like accountransfer and stringbuffer append are difficult to deal with
for deadlock

1. Easier case: different types of objects

A Can document a fixed order among types
A9EI YLX SY a2 KSy Y2 dashtabletd tie warki gbete, fieMa tv tol K

acquire the queue lock while holding thashtablef 2 O €

2. Easler case: objects are in an acyclic structure

A Can use the data structure to determine a fixed order
A9EL YL SY 4LF K2f RAYy3 | NE S
0 N

) E I Y 4 K2 |)[FVQS f 2
i KS& | NBE OKAftRNBY AY UKS S ¢

B

v awien ETHZzirich

Significance of Deadlocks

Once understood that (and where) race conditions can occur, with following
good programming practice and rules they are relatively easy to cope with.

But theDeadlockisthe dominant problemof reasonably complex concurrent
programs or systems and is therefore very important to anticipate!

Starvationdenotes the repeated but unsuccesful attempt of a recently
unblocked process to continue Its execution.

ETH:zurich

Semaphores

v awien ETHZzirich

Why do we need more than locks?

A Locks provide means to enforce atomicity via mutual exclusion

A They lack the means for threads to communicate about changes
A e.g., changes in the state

A Thus, they provide no order and are hard to use
Ae.g., if threads A and B lock object X, it is not determined who comes first

A Example: producer / consumer queues

v awien ETHZzirich

Se|ma|phor, das od. der:s,-e [zu griech. 8 >=Zeichenu. 2 =~ 2 tiagend]:
Signalmast mit beweglichen Fligeln.

Optische Telegrafievorrichtung mit Hilfe von schwenkbaren Signalarmen, Claude Chappe 1792

v awien ETHZzirich

Semaphore: Semantics

Semaphore: integewalued abstract data type with some initial values 0 and
the following operations

acquire(S)

{ «
£ waituntil S>0
& dec(S)

} |

acquire

release(S)
) { (protected)
5 inc(S)
& } release

* Dijkstra called then®P (probeeren)V (vrijgeven)also often usedwait and signal

Building a lock with a semaphore

sem_mutex= Semaphore(l);

lock mutex :=sem_mutex.acquir€)
only one thread is allowed into the critical section

unlock mutex :=sem_mutex.releas@
one other thread will be let In

Semaphore number: o
M b dzyt 2 O] SR
n M f 201 SR

\\

EBn M E 0 KNE

V)
X<
Q)¢

gAtt

v awien ETHZzirich

v awien ETHZzirich

Example: scaled dot product

A Execute in parallel: x =a{* d) * z
A a and d are column vectors
A x, z are scalar
A Assume each vector has 4 elements
A x = (g*d, + a*d, + a*d; + a*d,) * 2
A Parallelize on two processors (using two threads A and B)
A x,= a*d; + a*d,
A xg= a*ds+ ad,
AX=atXg) *Z
A Which synchronization is needed where?
A Using locks?
A Using semaphores?

v awien ETHZzirich

Rendezvousvith Semaphores

A Two processesP and Q executing code.

A Rendezvouz: locations in code, where P and Q wait for the other
to arrive. Synchronize P and Q.

— How would you implement
I this using Semaphores?

v awien ETHZzirich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphore$® Arrived andQ Arrived

P Q
Init P_Arrived=0 Q_Arrived=0
pre
rendezvous ? ?

post

v awien ETHZzirich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Semaphore$® Arrived andQ Arrived

P Q

Init P_Arrived=0 Q_Arrived=0

pre

rendezvous release(P_Arrived) acquire(P_Arrived)
? ?

post

v awien ETHZzirich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvol

Semaphores$_ Arrived andQ Arrived Dou you find

the problem?

P Q
Init P_Arrived=0 Q_Arrived=0
pre
rendezvous acquire(Q_Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q _Arrived)
post

v awien ETHZzirich

requires owned by
Deadlock / Pf\

Q_Arrived P_Arrived
owne}‘ Q requires
P Q
Init P_Arrived=0 Q_Arrived=0
pre
rendezvous acquire(Q_Arrived) acquire(P_Arrived)
release(P_Arrived) release(Q_Arrived)
post

17

v o ETHZzUrich

Rendezvous with Semaphores
Wrong solution with Deadlock

P {pre

18

v awien ETHZzirich

Rendezvous with Semaphores

Synchronize Processes P and Q at one location (Rendezvous)
Assume Semaphords Arrived andQ Arrived

P Q
Init P_Arrived=0 Q_Arrived=0
pre
rendezvous release(P_Arrived) acquire(P_Arrived)

post

acquire(Q _Arrived)

release(Q_Arrived)

v o ETHZzUrich

ImplementingSemaphoresvithout Spinning blockingqueueg

Consider a process lif); associated with semaphor&

acquire(S)
{if S> 0 then
dec(S)

else
put(Q g, self) -

block(self)
end } S O

release(S) & .

{ifQ g==93then

atomic

acquire

” iInc(S)

= else

% get(Q S p)
unblock(p)

end } release

20

