ETH ziirich R B PR ST) INFK

TORSTEN HOEFLER

Parallel Programming

y i B
| (’ 4 . o .
Pt . " r.r T -

5K MONTHS LATER |—

g O Y Ml | OURFIELDHASBEEN || STRUGGLE No MORE! Source: xked.com
i ‘ y STRUGGLING WITH THIS T™M HERE TO SOLVE. WO, THIS PROBLEM
PROBLEM FOR YEARS. IT \JITH ALGORITHMS! 15 mer HARD,

WWW

Wi

e ., [N 5

18 Apr 2019 |19:49 GMT

How the Boeing 737 Max Disaster
Looks to a Software Developer

Design shortcuts meant to make a new plane seem
like an old, familiar one are to blame

By Gregory Travis %
= — »

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

ReVpovpliniNdwighon

Administrivia THE ART
%

. MULTIPROCESSOR
" Book for (the second part of) the lecture series: pROC,RAMM,NQ

= Herlihy & Shavit: The Art of Multiprocessor Programming R
‘f

Contains more concepts (e.g., linearizability) than we use here!
r »p %

" Locking objects — terminology clarification

= When we say “we lock an object” then | mean “we acquire the
lock associated with the object” — data cannot be locked VIS Maurice Herlihy & Nir Shavit
directly in Java (cf. advisory filesystem locks)

= Starvation-freedom:
= every thread that tries to make progress, makes progress eventually

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Last week time
= Deadlock

= Cause (cyclic dependencies)
= Avoidance (acquire resources in global order)

= Semaphores
= Generalization of locks, can count (enables producer/consumer)

= Barriers
= Multi-process synchronization, important in parallel programming
= More examples for complexity of parallel programming (trial and error impossible)

= Producer/Consumer in detail

" Queues, implementation

= Monitors
= Condition variables, wait, signal, etc. (continued today)

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Learning goals today

* Finish condition variables and interface locks
® Producer-consumer examples

= More on locks (essentially a bag of tricks)
= Reader/writer
= Coarse-grained vs. fine-grained
= Optimistic synchronization
= Lazy synchronization

= Conflict-minimizing structures
= Example: skip lists

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues

public synchronized void enqueue(long item) { public void doEnqueue(long item) {
hile (iSFUll()) buﬂ:er‘[lzg =)1tem;
W in = next(in);
; // wait }
)
doEnqueue(item); public boo}ean iSFU]..].() {
} return (in+l) % size == out;
}
public synchronized long dequeue() { public long doDequeue() {
. . long item = buffer[out];
while (isEmpty()) out = next(out);
; // wait return item;
}
return doDequeue(); public boolean isEmpty() {
} Do you see the return in == out;
}

problem?
- Blocks forever

infinite loops with a lock
held ...

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues using sleep()

public void enqueue(long item) throws InterruptedException {
while (true) {

SYMEFenZEe (E1s) | What is the proper value for the timeout?
if (lisFull()) { Ideally we would like to be notified when
doEnqueue(item); the change happens!
return; When is that?

}
Thread.sleep(timeout); // sleep without lock!

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues with semaphores

import java.util.concurrent.Semaphore;

class Queue {
int in, out, size;
long buf[];
Semaphore nonEmpty, nonFull, manipulation;

Queue(int s) {
size = s;
buf = new long[size];
in = out = 0O;
nonEmpty = new Semaphore(0); // use the counting feature of semaphores!
nonFull = new Semaphore(size); // use the counting feature of semaphores!
manipulation = new Semaphore(1l); // binary semaphore

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues with semaphores, correct?
Do you see the

problem?
void enqueue(long x) { long dequeue() {
long x=0;
try { try {
manipulation.acquire(); manipulation.acquire();
nonFull.acquire(); nonEmpty.acquire();
buf[in] = Xx; X = buf[out];
in = (in+l) % size; out = (out+l) % size;
} }
catch (InterruptedException ex) {} catch (InterruptedException ex) {}
finally { finally {
manipulation.release(); manipulation.release();
nonEmpty.release(); nonFull.release();
} }
} return Xx;

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Deadlock (nearly the same as before, actually)!

reCIUires/ Consumer \ovxmed by
nonEmpty manipulation

ownedby\ Producer /requires

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues with semaphores

void enqueue(long x) { long dequeue() {
long x=0;
try { try {
nonFull.acquire(); nonEmpty.acquire();
manipulation.acquire(); manipulation.acquire();
buf[in] = x; X = buf[out];
in = next(in); out = next(out);
} }
catch (InterruptedException ex) {} catch (InterruptedException ex) {}
finally { finally {
manipulation.release(); manipulation.release();
nonEmpty.release(); nonFull.release();
} }
} return Xx;

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Why are semaphores (and locks) problematic?

Semaphores are unstructured. Correct use requires high level of discipline.
Easy to introduce deadlocks with semaphores.

We need: a lock that we can temporarily escape from when waiting on a
condition.

en EETHzUrich

Monitors

12

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Monitors

Monitor:
abstract data structure equipped with a set
of operations that run in mutual exclusion.

Invented by Tony Hoare and Per Brinch
Hansen (cf. Monitors: An Operating System
Structuring Concept, Tony Hoare, 1974)

Tony Hoare Per Brinch Hansen
(1934-today) (1938-2007)

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Monitors vs. Semaphores/Unbound Locks

mn DD

Code

monitor monitor

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer queues

public void synchronized enqueue(long item) {
"while (isFull()) wait"
doEnqueue(item);

} The mutual exclusion part is
nicely available already.
But: while the buffer is full
we need to give up the lock,

how?
public long synchronized dequeue() { ?

"while (i1sEmpty()) wait"”
return doDequeue();

¥

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Monitors

Monitors provide, in addition to mutual exclusion, a mechanism to check
conditions with the following semantics:

If a condition does not hold

= Release the monitor lock

= Wait for the condition to become true

= Signaling mechanism to avoid busy-loops (spinning)

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Monitors in Java

Uses the intrinsic lock (synchronized) of an object

+wait / notify / notifyAll:
wait() —the current thread waits until it is signaled (via notify)
notify() —wakes up one waiting thread (an arbitrary one)
notifyAll() — wakes up all waiting threads

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer with monitor in Java

class Queue {
int in, out, size;
long buf[];

Queue(int s) {
size = s;
buf = new long[size];
in = out = O;

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer with monitor in Java

synchronized void enqueue(long x) { synchronized long dequeue() { Wouldn't an if be
long x; sufficient?
while (isFull()) while (isEmpty())
try { try {
wait(); wait();
} catch (InterruptedException e) { } } catch (InterruptedException e) { }
doEnqueue(x); x = doDequeue();
notifyAll(); notifyAll();
} return x;
} (Why) can't we

use notify()?

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

IMPORTANT TO KNOW JAVA MONITOR
IMPLEMENTATION DETAILS

spcl.inf.ethz.ch

Thread States in Java

waiting state with
specified waiting
time, e.g,. sleep

TIMED_WAIT A
- 4

ETH:zurich

Y @spcl_eth

Spaced repetition

From Wikipedia, the free encyclopedia

Spaced repetition is a learning technique that incorporates increasing intervals of time between subsequent review of previously learned material in order to exploit
the psychological spacing effect. Alternative names include spaced rehearsal, expanding rehearsal, graduated intervals, repetition spacing, repetition scheduling,
spaced retrieval and expanded retrigval !’

WAITING

notify

thread is waiting for notifyAll

thread is waiting for

join/ @ condition or a join
NEW wait
thread has)\ mb?antOL
obtaine
not yet started RUNNABLE u BLOCKED)

TERMINATED
__——‘//

thread is runnable,

may or may not be

currently scheduled
by the OS

thread has
finished execution

entry to monitor lock

monitor
not yet free

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Monitor Queues

‘ method call - .

waiting entry

>

notification

waiting condition

Various (exact) semantics possible

spcl.inf.ethz.ch
Y @spcl_eth

ETH:zurich

Important to know for the programmer (you): what happens upon notification?

Priorities?
signal and wait

signaling process exits the monitor (goes to waiting entry queue)
signaling process passes monitor lock to signaled process

signal and continue
signaling process continues running
signaling process moves sighaled process to waiting entry queue

other semantics: signal and exit, signal and urgent wait ...

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Why is this important? Let's try this implementing a semaphore:

class Semaphore {
int number = 1; // number of threads allowed in critical section

synchronized void acquire() {
if (number <= 0)
try { wait(); } catch (InterruptedException e) { };
number--;

¥

synchronized void release() {
number++;
if (number > 0)
notify();

Looks good, doesn't it?
But there is a problem.
Do you know which?

spcl.inf.ethz.ch

ETH:zurich

Java Monitors = signal + continue

R synchronized void acquire() {
if (number <= 0)
try { wait(); } Q
catch (InterruptedException e) { };
number--;

synchronized void release() {
P number++;
if (number > 0)
notify();

Y @spcl_eth

Scenario:

1. Process P has previously acquired the semaphore and
decreased number to 0.

2. Process Q sees number = 0 and goes to waiting list.

3. P is executing release. In this moment process R wants to
enter the monitor via method acquire.

4. P signals Q and thus moves it into wait entry list (signal
and continue!). P exits the function/lock.

5. R gets entry to monitor before Q and sees the number =1

6. Q continues execution with number = 0!

Inconsistency!

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

The cure — a while loop.

synchronized void acquire() { synchronized void release() {
while (number‘ <= 9) number\++;
try { wait(); } if (number > 0)
catch (InterruptedException e) { }; notify();
number--; }
}

If, additionally, different threads evaluate different conditions, the notification has to
be a notifyAll. In this example it is not required.

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Something different: Java Interface Lock

Intrinsic locks ("synchronized") with objects provide a good abstraction and
should be first choice

Limitations

= one implicit lock per object

= are forced to be used in blocks
= [imited flexibility

Java offers the Lock interface for more flexibility (e.g., lock can be polled).

final Lock lock = new ReentrantLock();

spcl.inf.ethz.ch

Condition interface

Java Locks provide conditions that can be instantiated

Condition notFull = lock.newCondition();

Java conditions offer

.await() — the current thread waits until condition is signaled
.signal() — wakes up one thread waiting on this condition
.signalAll() — wakes up all threads waiting on this condition

Y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Condition interface

- Conditions are always associated with a lock
lock.newCondition()

.await()
— called with the lock held

- atomically releases the lock and waits until thread is sighaled
- when returns, it is guaranteed to hold the lock

— thread always needs to check condition

.signal{,All}() — wakes up one (all) waiting thread(s)
— called with the lock held

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer with explicit Lock

class Queue {
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s;
buf = new long[size];

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer / Consumer with Lock

void enqueue(long x) { long dequeue() {
long Xx;
lock.lock(); lock.lock();
while (isFull()) while (isEmpty())
try { try {
notFull.await(); notEmpty.await();
} catch (InterruptedException e){} } catch (InterruptedException e){}
doEnqueue(x); x = doDequeue();
notEmpty.signal(); notFull.signal();
lock.unlock(); lock.unlock();
} return x;

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

The Sleeping Barber Variant (E. Dijkstra)

Disadvantage of the solution: notFull and notEmpty signal will be sent in any case, even
when no threads are waiting.

Seemingly simple solution (in barber analogy)

1. Barber cuts hair, when done, check waiting
room, if nobody left, sleep

2. Client arrives, either enqueues or wakes
sleeping barber

What can go wrong (really only in a threaded world)?

Sleeping barber requires additional counters
for checking if processes are waiting:

m < 0 © buffer full & -m producers (clients) are waiting
n < 0 © buffer empty & -n consumers (barbers) are waiting

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer Consumer, Sleeping Barber Variant

class Queue {
int in=0, out=0, size;
long buf|];
final Lock lock = new ReentrantLock();
int n = 9; final Condition notFull = lock.newCondition();
int m; final Condition notEmpty = lock.newCondition();

Two variables ® sic!
Queue(int s) { ~ (cf. last lecture)
size = s; m=size-1;
buf = new long[size];

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Producer Consumer, Sleeping Barber Variant

void enqueue(long x) { long dequeue() {
long x;
lock.lock(); lock.lock();
m--; if (m<0@) n--; if (n<@)
while (isFull()) while (isEmpty())
try { notFull.await(); } try { notEmpty.await(); }
catch(InterruptedException e){} catch(InterruptedException e){}
doEnqueue(x); x = doDequeue();
N++; m++;
if (n<=0) notEmpty.signal(); if (m<=0) notFull.signal();
lock.unlock(); lock.unlock();
return Xx;

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Guidelines for using condition waits

* Always have a condition predicate

* Always test the condition predicate:
= before calling wait
= after returning from wait

* Always call wait in a loop
* Ensure state is protected by lock associated with condition

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Check out java.util.concurrent

Java (luckily for us) provides many common synchronization objects:
 Semaphores

e Barriers (CyclicBarrier)
* Producer / Consumer queues
* and many more... (Latches, Futures, ...)

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Reader / Writer Locks

Literature: Herlihy — Chapter 8.3

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Reading vs. writing

Recall:

* Multiple concurrent reads of same memory: Not a problem
= Multiple concurrent writes of same memory: Problem

= Multiple concurrent read & write of same memory: Problem

So far:

= If concurrent write/write or read/write might occur, use synchronization to
ensure one-thread-at-a-time

But this is unnecessarily conservative:
" Could still allow multiple simultaneous readers!

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Example
T
° ° . af D S
Consider a hashtable with one coarse-grained lock : “l‘wd}z‘
= So only one thread can perform operations at a time Y ‘A>
: WIKIPEDIA
But Suppose' The Free Encyclopedia
" There are many simultaneous 1lookup operations
" insert operations are very rare Number of edits (2007-11/27/2017): 921,644,695

Average views per day: ~200,000,000

Note: Important that Lookup does not actually
mutate shared memory, like a move-to-front
list operation would

- 0.12% write rate

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Another Example

Shared use of text, e.g., in an IDE
writers: editor(s), copy&paste agents, syntax highlighter
readers: compiler, editor(s), text viewers, copy&paste agents, search tools

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Reader/writer locks

A new abstract data type for synchronization : The reader/writer lock

This lock’s states fall into three categories:
= “not held” O<writers<1

0 <readers

= “held for writing” by one thread .
g by writers*readers ==

" “held for reading” by one or more threads

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Reader/writer locks

new: make a new lock, initially “not held”

acquire write: block if currently “held for reading” or “held
B for writing”, else make “held for writing”

release write: make “not held”

acquire read: block if currently “held for writing”, else

make/keep “held for reading” and increment
readers count

release read: decrement readers count, if 0, make “not
held”

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Pseudocode example

class Hashtable<K,V> {

// coarse-grained, one lock for table
RWLock 1k = new RWLock();

V lookup(K key) { void insert(K key, V val) {
int bucket = hashval(key); int bucket = hashval(key);
lk.acquire_read(); lk.acquire_write();

. read array[bucket] .. . write V to array[bucket] ..

1k.release_read(); lk.release_write();

} }

s a aaa R
e

(T e & Iy S F et AN . spcl.inf.ethz.ch e s
e e o wowie ENHZUriCh

A Simple Monitor-based Implementation

Is this lock fair?
class RWLock { The simple implementation gives priority to readers:
* when a reader reads, other readers can enter

int writers = 0; :) :
g * no writer can enter during readers reading

int readers = 0;

synchronized void acquire_read() { synchronized void acquire write() {

while (writers > 0) while (wr%ters > @ || readers > 0)
try { wait(); } try i wait(); } , |
catch (InterruptedException e) {} catch (InterruptedException e) {}
writers++;
readers++;
} }

synchronized void release read() { synchronized void release_write() {

writers--;
readers--;

. Exercise: come up with a
. notifyAll();
notifyAll(); 1fyAL1(); better performing version

} } using condition variables!

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Strong priority to the writers

class RWLock { synchronized void acquire_write() {
int writers = 0; writersWaiting++;
int readers = 9; while (writers > @ || readers > 0)
int writersWaiting = 0; try { wait(); }
catch (InterruptedException e) {}
synchronized void acquire_read() { writersWaiting--;
while (writers > @ || writersWaiting > 0) writers++;
try { wait(); } }
catch (InterruptedException e) {}
readers++; synchronized void release_write() {
} writers--;
notifyAll();
synchronized void release_read() { }
readers--; }
notifyAll();

}

Is this lock now fair?
(this was just to see of you’re awake)

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

A fair(er) model

What is fair in this context?

For example
* When a writer finishes, a number k of currently waiting readers may pass.

= When the k readers have passed, the next writer may enter (if any),
otherwise further readers may enter until the next writer enters (who has
to wait until current readers finish).

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

writers: # writers in CS

A falr(er) mOdeI readers: # readers in CS

writersWaiting: # writers trying to enter CS
readersWaiting: # readers trying to enter CS

class RWLock{
writersWait: # readers the writers have to wait

int writers = 0; int readers = 0;
int writersWaiting = @; int readersWaiting = 0;
int writersWait = 0;

synchronized void acquire_read() { synchronized void acquire_write() {

readersWaiting++; writersWaiting++;
while (writers > @ || while (writers > @ || readers > @ || writersWait > @)
(writersWaiting > @ && writersWait <= 0)) try { wait(); }

catch (InterruptedException e) {}

try { wait(); }
writersWaiting--;

catch (InterruptedException e) {}

readersWaiting--; writers++;

writersWait--; }

readers++;

} synchronized void release_write() {

writers--;
writersWait = readersWaiting;
notifyAll();
} Exercise: come up with a better performing
} version using condition variables!
Introduce an upper bound of k readers!

synchronized void release_read() {
readers--;
notifyAll();

}

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Reader/writer lock details

A reader/writer lock implementation (“not our problem”) usually gives
priority to writers:

= Once a writer blocks, no readers arriving later will get the lock before the writer
= Otherwise an insert could starve

Re-entrant?
= Mostly an orthogonal issue
= But some libraries support upgrading from reader to writer

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

In Java

Java’s synchronized statement does not support readers/writer

Instead, library

jJava.util.concurrent.locks.ReentrantReadWriteLock

Different interface: methods readLock and writeLock return objects that
themselves have 1lock and unlock methods

Does not have writer priority or reader-to-writer upgrading
= Always read the documentation

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

LOCK GRANULARITY

Literature: Herlihy — Chapter 9

51

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

The Five-Fold Path

= Coarse-grained locking

" Fine-grained locking

= Optimistic synchronization (locking)
" Lazy synchronization (locking)

= Next lecture: Lock-free synchronization

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Running Example: Sequential List Based Set

Add, Remove, and Find unique elements in a sorted linked list.

= add(c)

B— N J ’

= remove(c)

A4

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Set and Node

public class Set<T> {

private class Node {
T item; head tail
int key;
Node next;

Note that the list is

} . not "in place" but
pr'%vate Node hE?d, provides references
private Node tail; to its items

public boolean add(T x) {...};
public boolean remove(T x) {...};
public boolean contains(T x) {...};

enien ETHziirich
Coarse Grained Locking

public synchronized boolean add(T x) {...};
public synchronized boolean remove(T x) {...};
public synchronized boolean contains(T x) {...};

Simple, but a bottleneck for all threads.

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Fine grained Locking

Often more intricate than visible at a first sight
* requires careful consideration of special cases

Idea: split object into pieces with separate locks
* no mutual exclusion for algorithms on disjoint pieces

e ETHziirich

Let's try this

remove(c)

Is this ok?

57

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Let's try this

Thread A: remove(c)
Thread B: remove(b)

> - e

c not deleted! ®

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

What's the problem?

* When deleting, the next field of next is read, i.e., next also has to be
protected.

= A thread needs to lock both, predecessor and the node to be deleted
(hand-over-hand locking).

g 8 @
~

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Remove method

— ': hand over hand
public boolean remove(T item) { fﬂ ﬁ} ﬁ)

Node pred = null, curr = null; —_— — s
int key = item.hashCode();
head. lock(); while (curr.key < key) {
try { pred.unlock();
pl"Ed = head; pred = curr; // pred still locked
curr = pred.next; curr = curr.next;
cur‘r‘.lock(); curr.lock(); // lock hand over hand
try { }
// find and remove 1f (curr.key == key) {
} finally { curr.unlock(); } ig::;:e::u:.cuw'nexu [/ delete |
} finally { pred.unlock(); } } " remark: sentinel at front and end J
of list prevents an exception here
} return false; o -

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Disadvantages?

= Potentially long sequence of acquire / release before the intended action

can take place
* One (slow) thread locking "early nodes" can block another thread wanting

to acquire "late nodes"

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

TRUST ME, I'M A

OPTIMISTIC SYNCHRONIZATION —w—

PROGRAMMER

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Idea

Find nodes without locking,
* then lock nodes and What do we need to “validate”?
* check that everything is ok (validation)

e.g., add(c)

s o & @O

> p--->

spcl.inf.ethz.ch
Y @spcl_eth

ETH:zurich

Validation: what could go wrong?

Thread A: add(c)

A: find insertion point = ee--e--- | reeeeee-- !

' '
. l . l
! ' ! '
> 1 —> — > —
! 0 ! 0
! ' ! '
' '

Thread B: remove(b) Ii Ii ________ |

A: lock
A: validate: rescan

A: b not reachable Ii_--, ﬁ_“
2return false _i *

v

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Validation: what could go wrong?

Thread A: add(c)

A: find insertion point = ceceee-- . remmeee- :

Thread B: insert(b')

A: lock
A: validate: rescan
A: d !'= succ(b)

->return false . R

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Validate

private Boolean validate(Node pred, Node curr) {
Node node = head;
while (node.key <= pred.key) { // reachable?
if (node == pred)
return pred.next == curr; // correct?
node = node.next;

¥

return false;

¥

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Correctness (remove c)

If
* nodes b and c both locked
 node b still reachable from head

e node c still successortob
then .

* neither is in the process of being deleted

=» ok to delete and return true

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Correctness (remove c)

If
* nodes b and d both locked ’n
 node b still reachable from head

 node d still successorto b
then

* neither is in the process of being deleted,
therefore a new element ¢ must appear between b and d

* no thread can add between b and d:
c cannot have appeared after our locking

=» ok to return false

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Optimistic List

Good:
= No contention on traversals. Wait-Free:
] Every call finishes in a finite
= Traversals are wait-free. number of steps (NEVER waits
. .. for other threads).
= Less lock acquisitions.
Bad: Is the optimistic list
. . starvation-free? Why/why
= Need to traverse list twice not?

* The contains() method needs to acquire locks
* Not starvation-free

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Laziness

The quality that makes you go to great
effort to reduce overall energy

LAZY SY N c H RO N I S ATI O N expenditure [...] the first great virtue of

a programmer.

Larry Wall, Programming Perl
(emphasis mine)

70

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Lazy List

Like optimistic list but

* Scan only once

* Contains() never locks

How?

* Removing nodes causes trouble

* Use deleted-markers = invariant: every unmarked node is reachable!
* Remove nodes «lazily» after marking

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Lazy List: Remove

Scan list (as before)

Lock predecessor and current (as before)
Logical delete: mark current node as removed
Physical delete: redirect predecessor's next

Ii A4 ﬁ

O

N~

e.g., remove(c)

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Invariant

If a node is not marked then
 |tisreachable from head
* And reachable from its predecessor

A: remove(c) . 1 Ifi L Ii

lock

check if b or c are marked \/v

not marked? ok to delete:

mark c
delete c

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Remove method

public boolean remove(T item) {
int key = item.hashCode();
while (true) { // optmistic, retry
Node pred = this.head; if (!pred.marked && !curr.marked &&
Node curr = head.next;
while (curr.key < key) {
pred = curr;

pred.next == curr) {
if (curr.key != key)

curr = curr.next; return false;
} else {
pred.lock(); curr.marked = true; // logically remove
try { pred.next = curr.next; // physically remove
curr.lock(); .
try { return true;
// remove or not }
} finally { curr.unlock(); } }
} finally { pred.unlock(); }

¥
¥

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Wait-Free Contains

public boolean contains(T item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {
curr = curr.next;

¥

return curr.key == key && !curr.marked;

} This set data structure is again for
demonstration only. Do not use
this to implement a list! Now on
to something more practical.

More practical:

Lazy Skiplists

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Bill Pugh received a Ph.D. in Computer Science (with a minor in Acting) from Cornell University. He was a professor at the
University of Maryland for 23.5 years, and in January 2012 became professor emeritus to start new adventure somewhere at the
crossroads of software development and entrepreneurship.

Bill Pugh is a Packard Fellow, and invented Skip Lists, a randomized data structure that is widely taught in undergraduate data
structure courses. He has also made research contributions in in techniques for analyzing and transforming scientific codes for
execution on supercomputers, and in a number of issues related to the Java programming language, including the development
of ISR 133 - Java Memory Model and Thread Specification Revision. Prof. Pugh's current research focus is on developing
tools to improve software productivity, reliability and education. Current research projects include EindBugs, a static analysis
tool for Java, and Marmoset, an innovative framework for improving the learning and feedback cycle for student programming
projects.

Prof. Pugh has spoken at numerous developer conferences, including JavaOne, Goto/Jaco in Aarhus, the Devoxx conference in
Antwerp, and CodeMash. At JavaOne, he received six JavaOne RockStar awards, given to the speakers that receive the highest
evaluations from attendees.

Professor Pugh spent the 2008-2009 school year on sabbatical at Google, where, among other activities, he learned how to eat
fire.

Bill Pugh

76

oy e ETHziirich
Skiplist

= Collection of elements (without duplicates)
" |Interface:

= add // add an element
= remove // remove an element
= find // search an element

= Assumption:
e Many calls to find()
 Fewer calls to add() and much fewer calls to remove()

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

How about balanced trees?

= AVL trees, red-black trees, treaps, ...
= rebalancing after add and remove expensive

= rebalancing is a global operation (potentially changing the whole tree)
= particularly hard to implement in a lock-free way.

= = SkiplList

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Skip Lists

= Sorted multi-level list
= Node height probabilistic, e.g., P(height = n) = 0.5", no rebalancing

il

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

Skip List Property

= Sublist relationship between levels: higher level lists are always contained
in lower-level lists. Lowest level is entire list.

oy e ETHziirich
Searching

" Logarithmic Search (with high probability)
= Example: Search for 8

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Sequential Find

= // find node with value x

= // return -1 if not found, node level otherwise

= // pre = array of predecessor node for all levels
= // succ = array of successor node for all levels

= int find(T x, Node<T>[] pre, Node<T>[] succ)

" e.g8., X =8 s
= returns © g <
. > g <
g > g <
— > - > ' >
—0 2 4 5 7 8 9 +00

82

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Sequential Find

= // find node with value x

= // return -1 if not found, node level otherwise

= // pre = array of predecessor node for all levels
= // succ = array of successor node for all levels

= int find(T x, Node<T>[] pre, Node<T>[] succ)

" etg., X - 6 < >
= returns -1 : »8

a 5—
- e S
—>—>—>>a>.>—>

— 00 2 4 5 7 3 9 + 00

83

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

add (6) — with four levels!

" Find predecessors (lock-free)
" Lock predecessors
= Validate (cf. Lazy Synchronisation)

>

Iio 2 4

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

add (6)

" Find predecessors (lock-free) = Splice

" Lock predecessors = mark fully linked

= Validate (cf. Lazy Synchronisation) = Unlock
@

> . g

‘—>
O

\i@ 2 4

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

remove(5)

= find predecessors = Lock predecessors and validate

" Jock victim
" Jogically remove victim (mark)

Iioo 2

spcl.inf.ethz.ch oo o
wowiern ETHZzUrich

remove(5)

= find predecessors = Lock predecessors and validate

" lock victim = physically remove

" |ogically remove victim (mark) = unlock

i,

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

contains(8)

= sequential find() & not logically removed & fully linked
= even if other nodes are removed, it stays reachable

= contains is wait-free (while add and remove are not)

<

spcl.inf.ethz.ch oo o
wowien ETHZzUrich

Skiplist

= Practical parallel datastructure

= Code in book (latest revision!) — 139 lines
= Too much to discuss in detail here

= Review and implement as exercise

