
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Readers/Writers Lock, Lock Granularity:
Coarse Grained, Fine Grained, Optimal, and Lazy Synchronization

Source: xkcd.com

spcl.inf.ethz.ch

@spcl_eth

▪ Book for (the second part of) the lecture series:
▪ Herlihy & Shavit: The Art of Multiprocessor Programming

Contains more concepts (e.g., linearizability) than we use here!

▪ Locking objects – terminology clarification
▪ When we say “we lock an object” then I mean “we acquire the

lock associated with the object” – data cannot be locked
directly in Java (cf. advisory filesystem locks)

▪ Starvation-freedom:
▪ every thread that tries to make progress, makes progress eventually

Administrivia

2

spcl.inf.ethz.ch

@spcl_eth

▪ Deadlock
▪ Cause (cyclic dependencies)

▪ Avoidance (acquire resources in global order)

▪ Semaphores
▪ Generalization of locks, can count (enables producer/consumer)

▪ Barriers
▪ Multi-process synchronization, important in parallel programming

▪ More examples for complexity of parallel programming (trial and error impossible)

▪ Producer/Consumer in detail
▪ Queues, implementation

▪ Monitors
▪ Condition variables, wait, signal, etc. (continued today)

Last week time

3

spcl.inf.ethz.ch

@spcl_eth

▪ Finish condition variables and interface locks
▪ Producer-consumer examples

▪ More on locks (essentially a bag of tricks)
▪ Reader/writer

▪ Coarse-grained vs. fine-grained

▪ Optimistic synchronization

▪ Lazy synchronization

▪ Conflict-minimizing structures
▪ Example: skip lists

Learning goals today

4

spcl.inf.ethz.ch

@spcl_eth

public synchronized void enqueue(long item) {
while (isFull())

; // wait
doEnqueue(item);

}

5

Producer / Consumer queues

→ Blocks forever
infinite loops with a lock
held …

public synchronized long dequeue() {

while (isEmpty())
; // wait

return doDequeue();
} Do you see the

problem?

public void doEnqueue(long item) {
buffer[in] = item;
in = next(in);

}

public boolean isFull() {
return (in+1) % size == out;

}

public long doDequeue() {
long item = buffer[out];
out = next(out);
return item;

}
public boolean isEmpty() {

return in == out;
}

spcl.inf.ethz.ch

@spcl_eth

public void enqueue(long item) throws InterruptedException {

while (true) {

synchronized(this) {

if (!isFull()) {

doEnqueue(item);

return;

}

}

Thread.sleep(timeout); // sleep without lock!

}

}

6

Producer / Consumer queues using sleep()

What is the proper value for the timeout?
Ideally we would like to be notified when

the change happens!
When is that?

spcl.inf.ethz.ch

@spcl_eth

import java.util.concurrent.Semaphore;

class Queue {
int in, out, size;
long buf[];
Semaphore nonEmpty, nonFull, manipulation;

Queue(int s) {
size = s;
buf = new long[size];
in = out = 0;
nonEmpty = new Semaphore(0); // use the counting feature of semaphores!
nonFull = new Semaphore(size); // use the counting feature of semaphores!
manipulation = new Semaphore(1); // binary semaphore

}
}

7

Producer / Consumer queues with semaphores

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

try {
manipulation.acquire();
nonFull.acquire();
buf[in] = x;
in = (in+1) % size;

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonEmpty.release();

}
}

long dequeue() {
long x=0;
try {

manipulation.acquire();
nonEmpty.acquire();
x = buf[out];
out = (out+1) % size;

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonFull.release();

}
return x;

}
8

Producer / Consumer queues with semaphores, correct?
Do you see the

problem?

spcl.inf.ethz.ch

@spcl_eth

9

Deadlock (nearly the same as before, actually)!

Consumer

Producer

manipulationnonEmpty

owned byrequires

owned by requires

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

try {
nonFull.acquire();
manipulation.acquire();
buf[in] = x;
in = next(in);

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonEmpty.release();

}
}

long dequeue() {
long x=0;
try {

nonEmpty.acquire();
manipulation.acquire();
x = buf[out];
out = next(out);

}
catch (InterruptedException ex) {}
finally {

manipulation.release();
nonFull.release();

}
return x;

}
10

Producer / Consumer queues with semaphores

spcl.inf.ethz.ch

@spcl_eth

Semaphores are unstructured. Correct use requires high level of discipline.

Easy to introduce deadlocks with semaphores.

We need: a lock that we can temporarily escape from when waiting on a
condition.

11

Why are semaphores (and locks) problematic?

spcl.inf.ethz.ch

@spcl_eth

Monitors

12

spcl.inf.ethz.ch

@spcl_eth

Monitor:
abstract data structure equipped with a set
of operations that run in mutual exclusion.

Invented by Tony Hoare and Per Brinch
Hansen (cf. Monitors: An Operating System
Structuring Concept, Tony Hoare, 1974)

13

Monitors

Tony Hoare
(1934-today)

Per Brinch Hansen
(1938-2007)

spcl.inf.ethz.ch

@spcl_eth

14

Monitors vs. Semaphores/Unbound Locks

shared shared

Code

monitor monitor

spcl.inf.ethz.ch

@spcl_eth

public void synchronized enqueue(long item) {
"while (isFull()) wait"
doEnqueue(item);

}

15

Producer / Consumer queues

The mutual exclusion part is
nicely available already.

But: while the buffer is full
we need to give up the lock,

how?
public long synchronized dequeue() {

"while (isEmpty()) wait"
return doDequeue();

}

spcl.inf.ethz.ch

@spcl_eth

Monitors provide, in addition to mutual exclusion, a mechanism to check
conditions with the following semantics:

If a condition does not hold

▪ Release the monitor lock

▪ Wait for the condition to become true

▪ Signaling mechanism to avoid busy-loops (spinning)

16

Monitors

spcl.inf.ethz.ch

@spcl_eth

Uses the intrinsic lock (synchronized) of an object

+ wait / notify / notifyAll:
wait() – the current thread waits until it is signaled (via notify)

notify() – wakes up one waiting thread (an arbitrary one)

notifyAll() – wakes up all waiting threads

17

Monitors in Java

spcl.inf.ethz.ch

@spcl_eth

class Queue {

int in, out, size;

long buf[];

Queue(int s) {

size = s;

buf = new long[size];

in = out = 0;

}

...

}

18

Producer / Consumer with monitor in Java

spcl.inf.ethz.ch

@spcl_eth

synchronized void enqueue(long x) {

while (isFull())

try {

wait();

} catch (InterruptedException e) { }

doEnqueue(x);

notifyAll();

}

19

Producer / Consumer with monitor in Java

synchronized long dequeue() {

long x;

while (isEmpty())

try {

wait();

} catch (InterruptedException e) { }

x = doDequeue();

notifyAll();

return x;

} (Why) can't we
use notify()?

Wouldn't an if be
sufficient?

spcl.inf.ethz.ch

@spcl_eth

IMPORTANT TO KNOW JAVA MONITOR
IMPLEMENTATION DETAILS

20

spcl.inf.ethz.ch

@spcl_eth

21

Thread States in Java

thread has
not yet started

thread is runnable,
may or may not be
currently scheduled
by the OS

thread is waiting for
entry to monitor lock

thread is waiting for
a condition or a join

waiting state with
specified waiting
time, e.g,. sleep

notify
notifyAll

join/
wait

monitor
obtained

monitor
not yet free

TERMINATED

NEW

TIMED_WAIT WAITING

BLOCKED

thread has
finished execution

RUNNABLE

spcl.inf.ethz.ch

@spcl_eth

waiting entry

waiting condition

22

Monitor Queues

monitor

method call

notification

wait

spcl.inf.ethz.ch

@spcl_eth

Important to know for the programmer (you): what happens upon notification?
Priorities?

signal and wait
signaling process exits the monitor (goes to waiting entry queue)
signaling process passes monitor lock to signaled process

signal and continue
signaling process continues running
signaling process moves signaled process to waiting entry queue

other semantics: signal and exit, signal and urgent wait …

23

Various (exact) semantics possible

spcl.inf.ethz.ch

@spcl_eth

class Semaphore {
int number = 1; // number of threads allowed in critical section

synchronized void acquire() {
if (number <= 0)

try { wait(); } catch (InterruptedException e) { };
number--;

}

synchronized void release() {
number++;
if (number > 0)

notify();
}

}

24

Why is this important? Let's try this implementing a semaphore:

Looks good, doesn't it?
But there is a problem.
Do you know which?

spcl.inf.ethz.ch

@spcl_eth

synchronized void acquire() {

if (number <= 0)

try { wait(); }

catch (InterruptedException e) { };

number--;

}

synchronized void release() {

number++;

if (number > 0)

notify();

}

Scenario:

1. Process P has previously acquired the semaphore and

decreased number to 0.

2. Process Q sees number = 0 and goes to waiting list.

3. P is executing release. In this moment process R wants to

enter the monitor via method acquire.

4. P signals Q and thus moves it into wait entry list (signal

and continue!). P exits the function/lock.

5. R gets entry to monitor before Q and sees the number = 1

6. Q continues execution with number = 0!

Inconsistency!

25

Java Monitors = signal + continue

P

Q

R

spcl.inf.ethz.ch

@spcl_eth

synchronized void acquire() {

while (number <= 0)

try { wait(); }

catch (InterruptedException e) { };

number--;

}

26

The cure – a while loop.

synchronized void release() {

number++;

if (number > 0)

notify();

}

If, additionally, different threads evaluate different conditions, the notification has to

be a notifyAll. In this example it is not required.

spcl.inf.ethz.ch

@spcl_eth

Intrinsic locks ("synchronized") with objects provide a good abstraction and
should be first choice

Limitations

▪ one implicit lock per object

▪ are forced to be used in blocks

▪ limited flexibility

Java offers the Lock interface for more flexibility (e.g., lock can be polled).

28

Something different: Java Interface Lock

final Lock lock = new ReentrantLock();

spcl.inf.ethz.ch

@spcl_eth

Java Locks provide conditions that can be instantiated

Java conditions offer

.await() – the current thread waits until condition is signaled

.signal() – wakes up one thread waiting on this condition

.signalAll() – wakes up all threads waiting on this condition

29

Condition interface

Condition notFull = lock.newCondition();

spcl.inf.ethz.ch

@spcl_eth

→ Conditions are always associated with a lock
lock.newCondition()

.await()
– called with the lock held

– atomically releases the lock and waits until thread is signaled

– when returns, it is guaranteed to hold the lock

– thread always needs to check condition

.signal{,All}() – wakes up one (all) waiting thread(s)
– called with the lock held

30

Condition interface

spcl.inf.ethz.ch

@spcl_eth

class Queue {
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s;
buf = new long[size];

}

...

}

31

Producer / Consumer with explicit Lock

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

lock.lock();
while (isFull())

try {
notFull.await();

} catch (InterruptedException e){}
doEnqueue(x);
notEmpty.signal();
lock.unlock();

}

long dequeue() {
long x;
lock.lock();
while (isEmpty())

try {
notEmpty.await();

} catch (InterruptedException e){}
x = doDequeue();
notFull.signal();
lock.unlock();
return x;

}

32

Producer / Consumer with Lock

spcl.inf.ethz.ch

@spcl_eth

Disadvantage of the solution: notFull and notEmpty signal will be sent in any case, even
when no threads are waiting.

Seemingly simple solution (in barber analogy)
1. Barber cuts hair, when done, check waiting

room, if nobody left, sleep
2. Client arrives, either enqueues or wakes

sleeping barber
What can go wrong (really only in a threaded world)?

Sleeping barber requires additional counters
for checking if processes are waiting:
𝑚 ≤ 0 ⇔ buffer full & -𝑚 producers (clients) are waiting
𝑛 ≤ 0 ⇔ buffer empty & -𝑛 consumers (barbers) are waiting

33

The Sleeping Barber Variant (E. Dijkstra)

spcl.inf.ethz.ch

@spcl_eth

class Queue {
int in=0, out=0, size;
long buf[];
final Lock lock = new ReentrantLock();
int n = 0; final Condition notFull = lock.newCondition();
int m; final Condition notEmpty = lock.newCondition();

Queue(int s) {
size = s; m=size-1;
buf = new long[size];

}
...
}

34

Producer Consumer, Sleeping Barber Variant

Two variables sic!
(cf. last lecture)

spcl.inf.ethz.ch

@spcl_eth

void enqueue(long x) {

lock.lock();
m--; if (m<0)

while (isFull())
try { notFull.await(); }
catch(InterruptedException e){}

doEnqueue(x);
n++;
if (n<=0) notEmpty.signal();
lock.unlock();

}

long dequeue() {
long x;
lock.lock();
n--; if (n<0)

while (isEmpty())
try { notEmpty.await(); }
catch(InterruptedException e){}

x = doDequeue();
m++;
if (m<=0) notFull.signal();
lock.unlock();
return x;

}

35

Producer Consumer, Sleeping Barber Variant

spcl.inf.ethz.ch

@spcl_eth

• Always have a condition predicate

• Always test the condition predicate:
▪ before calling wait

▪ after returning from wait

• Always call wait in a loop

• Ensure state is protected by lock associated with condition

36

Guidelines for using condition waits

spcl.inf.ethz.ch

@spcl_eth

Java (luckily for us) provides many common synchronization objects:

• Semaphores

• Barriers (CyclicBarrier)

• Producer / Consumer queues

• and many more... (Latches, Futures, ...)

37

Check out java.util.concurrent

spcl.inf.ethz.ch

@spcl_eth

Reader / Writer Locks
Literature: Herlihy – Chapter 8.3

38

spcl.inf.ethz.ch

@spcl_eth

Recall:

▪ Multiple concurrent reads of same memory: Not a problem

▪ Multiple concurrent writes of same memory: Problem

▪ Multiple concurrent read & write of same memory: Problem

So far:

▪ If concurrent write/write or read/write might occur, use synchronization to
ensure one-thread-at-a-time

But this is unnecessarily conservative:

▪ Could still allow multiple simultaneous readers!

Reading vs. writing

39

spcl.inf.ethz.ch

@spcl_eth

Consider a hashtable with one coarse-grained lock
▪ So only one thread can perform operations at a time

But suppose:
▪ There are many simultaneous lookup operations

▪ insert operations are very rare

Note: Important that lookup does not actually
mutate shared memory, like a move-to-front
list operation would

Example

40

Number of edits (2007-11/27/2017): 921,644,695
Average views per day: ~200,000,000

→ 0.12% write rate

spcl.inf.ethz.ch

@spcl_eth

Shared use of text, e.g., in an IDE

writers: editor(s), copy&paste agents, syntax highlighter

readers: compiler, editor(s), text viewers, copy&paste agents, search tools

Another Example

41

spcl.inf.ethz.ch

@spcl_eth

A new abstract data type for synchronization : The reader/writer lock

This lock’s states fall into three categories:

▪ “not held”

▪ “held for writing” by one thread

▪ “held for reading” by one or more threads

Reader/writer locks

0 writers 1
0 readers
writers*readers == 0

42

spcl.inf.ethz.ch

@spcl_eth

new: make a new lock, initially “not held”

acquire_write: block if currently “held for reading” or “held
for writing”, else make “held for writing”

release_write: make “not held”

acquire_read: block if currently “held for writing”, else
make/keep “held for reading” and increment
readers count

release_read: decrement readers count, if 0, make “not
held”

Reader/writer locks

43

spcl.inf.ethz.ch

@spcl_eth

class Hashtable<K,V> {

…

// coarse-grained, one lock for table

RWLock lk = new RWLock();
…

Pseudocode example

void insert(K key, V val) {
int bucket = hashval(key);
lk.acquire_write();
… write V to array[bucket] …
lk.release_write();

}
…

}

44

V lookup(K key) {

int bucket = hashval(key);

lk.acquire_read();

… read array[bucket] …

lk.release_read();

}

spcl.inf.ethz.ch

@spcl_eth

class RWLock {

int writers = 0;

int readers = 0;

synchronized void acquire_read() {

while (writers > 0)

try { wait(); }

catch (InterruptedException e) {}

readers++;

}

synchronized void release_read() {

readers--;

notifyAll();

}

A Simple Monitor-based Implementation

synchronized void acquire_write() {

while (writers > 0 || readers > 0)

try { wait(); }

catch (InterruptedException e) {}

writers++;

}

synchronized void release_write() {

writers--;

notifyAll();

}

}

Exercise: come up with a
better performing version
using condition variables!

45

Is this lock fair?
The simple implementation gives priority to readers:
• when a reader reads, other readers can enter
• no writer can enter during readers reading

spcl.inf.ethz.ch

@spcl_eth

class RWLock {

int writers = 0;

int readers = 0;

int writersWaiting = 0;

synchronized void acquire_read() {

while (writers > 0 || writersWaiting > 0)

try { wait(); }

catch (InterruptedException e) {}

readers++;

}

synchronized void release_read() {

readers--;

notifyAll();

}

Strong priority to the writers

synchronized void acquire_write() {

writersWaiting++;

while (writers > 0 || readers > 0)

try { wait(); }

catch (InterruptedException e) {}

writersWaiting--;

writers++;

}

synchronized void release_write() {

writers--;

notifyAll();

}

}

• Writers

46

Is this lock now fair?
(this was just to see of you’re awake)

spcl.inf.ethz.ch

@spcl_eth

What is fair in this context?

For example

▪ When a writer finishes, a number k of currently waiting readers may pass.

▪ When the k readers have passed, the next writer may enter (if any),
otherwise further readers may enter until the next writer enters (who has
to wait until current readers finish).

A fair(er) model

47

spcl.inf.ethz.ch

@spcl_eth

class RWLock{

int writers = 0; int readers = 0;

int writersWaiting = 0; int readersWaiting = 0;

int writersWait = 0;

synchronized void acquire_read() {

readersWaiting++;

while (writers > 0 ||

(writersWaiting > 0 && writersWait <= 0))

try { wait(); }

catch (InterruptedException e) {}

readersWaiting--;

writersWait--;

readers++;

}

synchronized void release_read() {

readers--;

notifyAll();

}

A fair(er) model

synchronized void acquire_write() {

writersWaiting++;

while (writers > 0 || readers > 0 || writersWait > 0)

try { wait(); }

catch (InterruptedException e) {}

writersWaiting--;

writers++;

}

synchronized void release_write() {

writers--;

writersWait = readersWaiting;

notifyAll();

}

}
When a writer finishes, the number of
currently waiting readers may pass.

Writers have to wait until the waiting readers
have finished.

Writers are waiting and the readers don't
have priority any more.

writers: # writers in CS
readers: # readers in CS
writersWaiting: # writers trying to enter CS
readersWaiting: # readers trying to enter CS
writersWait: # readers the writers have to wait

Exercise: come up with a better performing
version using condition variables!

Introduce an upper bound of k readers!
48

spcl.inf.ethz.ch

@spcl_eth

A reader/writer lock implementation (“not our problem”) usually gives
priority to writers:
▪ Once a writer blocks, no readers arriving later will get the lock before the writer

▪ Otherwise an insert could starve

Re-entrant?
▪ Mostly an orthogonal issue

▪ But some libraries support upgrading from reader to writer

Reader/writer lock details

49

spcl.inf.ethz.ch

@spcl_eth

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

Different interface: methods readLock and writeLock return objects that
themselves have lock and unlock methods

Does not have writer priority or reader-to-writer upgrading
▪ Always read the documentation

In Java

50

spcl.inf.ethz.ch

@spcl_eth

LOCK GRANULARITY
Literature: Herlihy – Chapter 9

51

spcl.inf.ethz.ch

@spcl_eth

▪ Coarse-grained locking

▪ Fine-grained locking

▪ Optimistic synchronization (locking)

▪ Lazy synchronization (locking)

▪ Next lecture: Lock-free synchronization

The Five-Fold Path

52

spcl.inf.ethz.ch

@spcl_eth

Add, Remove, and Find unique elements in a sorted linked list.

▪ add(c)

▪ remove(c)

Running Example: Sequential List Based Set

a b d e

c

a b c d

53

spcl.inf.ethz.ch

@spcl_eth

public class Set<T> {

private class Node {
T item;
int key;
Node next;

}
private Node head;
private Node tail;

public boolean add(T x) {...};
public boolean remove(T x) {...};
public boolean contains(T x) {...};

}

Set and Node

a b c

head tail

Note that the list is
not "in place" but

provides references
to its items

54

spcl.inf.ethz.ch

@spcl_eth

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

Simple, but a bottleneck for all threads.

Coarse Grained Locking

a b d e

c

55

spcl.inf.ethz.ch

@spcl_eth

Often more intricate than visible at a first sight

• requires careful consideration of special cases

Idea: split object into pieces with separate locks

• no mutual exclusion for algorithms on disjoint pieces

Fine grained Locking

56

spcl.inf.ethz.ch

@spcl_eth

remove(c)

Is this ok?

Let's try this

a b c d

57

spcl.inf.ethz.ch

@spcl_eth

Thread A: remove(c)

Thread B: remove(b)

c not deleted!

Let's try this

a b c d

AB

58

spcl.inf.ethz.ch

@spcl_eth

▪ When deleting, the next field of next is read, i.e., next also has to be
protected.

▪ A thread needs to lock both, predecessor and the node to be deleted
(hand-over-hand locking).

What's the problem?

a b d e

BB

59

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
Node pred = null, curr = null;
int key = item.hashCode();
head.lock();
try {
pred = head;
curr = pred.next;
curr.lock();
try {

// find and remove
} finally { curr.unlock(); }

} finally { pred.unlock(); }
}

Remove method
hand over hand

60

while (curr.key < key) {

pred.unlock();

pred = curr; // pred still locked

curr = curr.next;

curr.lock(); // lock hand over hand

}

if (curr.key == key) {

pred.next = curr.next; // delete

return true;

}

return false;

remark: sentinel at front and end
of list prevents an exception here

spcl.inf.ethz.ch

@spcl_eth

▪ Potentially long sequence of acquire / release before the intended action
can take place

▪ One (slow) thread locking "early nodes" can block another thread wanting
to acquire "late nodes"

Disadvantages?

61

spcl.inf.ethz.ch

@spcl_eth

OPTIMISTIC SYNCHRONIZATION

62

spcl.inf.ethz.ch

@spcl_eth

Find nodes without locking,

• then lock nodes and

• check that everything is ok (validation)

e.g., add(c)

Idea

a b d e

63

What do we need to “validate”?

spcl.inf.ethz.ch

@spcl_eth

Thread A: add(c)
A: find insertion point

Thread B: remove(b)

A: lock

A: validate: rescan

A: b not reachable

→return false

Validation: what could go wrong?

a b d e

a b d e
B B

a b d e
A A

64

spcl.inf.ethz.ch

@spcl_eth

Thread A: add(c)
A: find insertion point

Thread B: insert(b')

A: lock

A: validate: rescan

A: d != succ(b)

→return false

Validation: what could go wrong?

a b d e

a b d e
B B

a b d e

A A

b'

b'
65

spcl.inf.ethz.ch

@spcl_eth

private Boolean validate(Node pred, Node curr) {

Node node = head;

while (node.key <= pred.key) { // reachable?

if (node == pred)

return pred.next == curr; // correct?

node = node.next;

}

return false;

}

Validate

pred curr
A A

66

spcl.inf.ethz.ch

@spcl_eth

If

• nodes b and c both locked

• node b still reachable from head

• node c still successor to b

then

• neither is in the process of being deleted

➔ ok to delete and return true

Correctness (remove c)

b c

67

spcl.inf.ethz.ch

@spcl_eth

If

• nodes b and d both locked

• node b still reachable from head

• node d still successor to b

then

• neither is in the process of being deleted,
therefore a new element c must appear between b and d

• no thread can add between b and d:
c cannot have appeared after our locking

➔ ok to return false

Correctness (remove c)

b d

68

spcl.inf.ethz.ch

@spcl_eth

Good:

▪ No contention on traversals.

▪ Traversals are wait-free.

▪ Less lock acquisitions.

Bad:

▪ Need to traverse list twice

▪ The contains() method needs to acquire locks

▪ Not starvation-free

Optimistic List

Wait-Free:
Every call finishes in a finite
number of steps (NEVER waits
for other threads).

69

Is the optimistic list
starvation-free? Why/why
not?

spcl.inf.ethz.ch

@spcl_eth

LAZY SYNCHRONISATION

70

spcl.inf.ethz.ch

@spcl_eth

Like optimistic list but

• Scan only once

• Contains() never locks

How?

• Removing nodes causes trouble

• Use deleted-markers → invariant: every unmarked node is reachable!

• Remove nodes «lazily» after marking

Lazy List

71

spcl.inf.ethz.ch

@spcl_eth

Scan list (as before)

Lock predecessor and current (as before)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g., remove(c)

Lazy List: Remove

a b c d

72

spcl.inf.ethz.ch

@spcl_eth

If a node is not marked then

• It is reachable from head

• And reachable from its predecessor

A: remove(c)
lock

check if b or c are marked

not marked? ok to delete:

mark c

delete c

Invariant

a b c d

73

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
int key = item.hashCode();
while (true) { // optmistic, retry
Node pred = this.head;
Node curr = head.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

}
pred.lock();
try {
curr.lock();
try {
// remove or not

} finally { curr.unlock(); }
} finally { pred.unlock(); }

}
}

Remove method

74

if (!pred.marked && !curr.marked &&

pred.next == curr) {

if (curr.key != key)

return false;

else {

curr.marked = true; // logically remove

pred.next = curr.next; // physically remove

return true;

}

}

spcl.inf.ethz.ch

@spcl_eth

public boolean contains(T item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next;
}
return curr.key == key && !curr.marked;

}

Wait-Free Contains

75

This set data structure is again for
demonstration only. Do not use
this to implement a list! Now on
to something more practical.

spcl.inf.ethz.ch

@spcl_eth

More practical:

Lazy Skiplists

76

Bill Pugh

spcl.inf.ethz.ch

@spcl_eth

▪ Collection of elements (without duplicates)

▪ Interface:
▪ add // add an element

▪ remove // remove an element

▪ find // search an element

▪ Assumption:
• Many calls to find()

• Fewer calls to add() and much fewer calls to remove()

Skiplist

77

spcl.inf.ethz.ch

@spcl_eth

▪ AVL trees, red-black trees, treaps, ...
▪ rebalancing after add and remove expensive

▪ rebalancing is a global operation (potentially changing the whole tree)

▪ particularly hard to implement in a lock-free way.

▪ → SkipList

How about balanced trees?

78

spcl.inf.ethz.ch

@spcl_eth

▪ Sorted multi-level list

▪ Node height probabilistic, e.g., ℙ ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑛 = 0.5𝑛, no rebalancing

Skip Lists

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

79

spcl.inf.ethz.ch

@spcl_eth

▪ Sublist relationship between levels: higher level lists are always contained
in lower-level lists. Lowest level is entire list.

Skip List Property

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

80

spcl.inf.ethz.ch

@spcl_eth

▪ Logarithmic Search (with high probability)

▪ Example: Search for 8

Searching

>
>

>
>

<
< <

<
< <

< =
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

81

spcl.inf.ethz.ch

@spcl_eth

▪ // find node with value x

▪ // return -1 if not found, node level otherwise

▪ // pre = array of predecessor node for all levels

▪ // succ = array of successor node for all levels

▪ int find(T x, Node<T>[] pre, Node<T>[] succ)

▪ e.g., x = 8

▪ returns 0

Sequential Find

>
>

>
>

<
< <

<
< <

< = >
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

82

spcl.inf.ethz.ch

@spcl_eth

▪ // find node with value x

▪ // return -1 if not found, node level otherwise

▪ // pre = array of predecessor node for all levels

▪ // succ = array of successor node for all levels

▪ int find(T x, Node<T>[] pre, Node<T>[] succ)

▪ e.g., x = 6

▪ returns -1

Sequential Find

>
>

>
>

<
< <

<
<
< >

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

83

spcl.inf.ethz.ch

@spcl_eth

𝟓−∞

▪ Find predecessors (lock-free)

▪ Lock predecessors

▪ Validate (cf. Lazy Synchronisation)

add (6) – with four levels!

<
<
<
<

+∞𝟐 𝟒 𝟕 𝟖 𝟗

84

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗𝟔

▪ Find predecessors (lock-free)

▪ Lock predecessors

▪ Validate (cf. Lazy Synchronisation)

add (6)

▪ Splice

▪ mark fully linked

▪ Unlock

<
<

<
<
<

85

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

▪ find predecessors

▪ lock victim

▪ logically remove victim (mark)

remove(5)

▪ Lock predecessors and validate

<
<
<
<

86

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

▪ find predecessors

▪ lock victim

▪ logically remove victim (mark)

remove(5)

▪ Lock predecessors and validate

▪ physically remove

▪ unlock

<
<
<
<

87

spcl.inf.ethz.ch

@spcl_eth

▪ sequential find() & not logically removed & fully linked

▪ even if other nodes are removed, it stays reachable

▪ contains is wait-free (while add and remove are not)

contains(8)

>
>

>
>

<
< <

<
< <

< =
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

88

spcl.inf.ethz.ch

@spcl_eth

▪ Practical parallel datastructure

▪ Code in book (latest revision!) – 139 lines
▪ Too much to discuss in detail here

▪ Review and implement as exercise

89

Skiplist

