
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Lock tricks, skip lists, and without Locks I

xkcd.org

spcl.inf.ethz.ch

@spcl_eth

 Producer/Consumer in detail
 Queues, implementation

 Deadlock cases (repetition)

 Monitors (repetition)
 Condition variables, wait, signal, etc.

 Java’s thread state machine

 Sleeping barber
 Optimize (avoid) notifications using counters

 RW Locks
 Fairness is an issue (application-dependent)

 Lock tricks on the list-based set example
 Fine-grained locking … continued now

Last week

2

spcl.inf.ethz.ch

@spcl_eth

 Finish lock tricks
 Optimistic synchronization

 Lazy synchronization

 Conflict-minimizing structures (probabilistic)
 Example: skip lists

 Lock scheduling
 Sleeping vs. spinlock (deeper repetition)

 Lock-free
 Stack, list

Learning goals today

3

spcl.inf.ethz.ch

@spcl_eth

Often more intricate than visible at a first sight

• requires careful consideration of special cases

Idea: split object into pieces with separate locks

• no mutual exclusion for algorithms on disjoint pieces

Fine grained Locking

4

spcl.inf.ethz.ch

@spcl_eth

remove(c)

Is this ok?

Let's try this

a b c d

5

spcl.inf.ethz.ch

@spcl_eth

Thread A: remove(c)

Thread B: remove(b)

c not deleted!

Let's try this

a b c d

AB

6

spcl.inf.ethz.ch

@spcl_eth

 When deleting, the next field of next is read, i.e., next also has to be
protected.

 A thread needs to lock both, predecessor and the node to be deleted
(hand-over-hand locking).

What's the problem?

a b d e

BB

7

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
Node pred = null, curr = null;
int key = item.hashCode();
head.lock();
try {
pred = head;
curr = pred.next;
curr.lock();
try {

// find and remove
} finally { curr.unlock(); }

} finally { pred.unlock(); }
}

Remove method
hand over hand

8

while (curr.key < key) {

pred.unlock();

pred = curr; // pred still locked

curr = curr.next;

curr.lock(); // lock hand over hand

}

if (curr.key == key) {

pred.next = curr.next; // delete

return true;

}

return false;

remark: sentinel at front and end
of list prevents an exception here

spcl.inf.ethz.ch

@spcl_eth

 Potentially long sequence of acquire / release before the intended action
can take place

 One (slow) thread locking "early nodes" can block another thread wanting
to acquire "late nodes"

Disadvantages?

9

spcl.inf.ethz.ch

@spcl_eth

OPTIMISTIC SYNCHRONIZATION

10

spcl.inf.ethz.ch

@spcl_eth

Find nodes without locking,

• then lock nodes and

• check that everything is ok (validation)

e.g., add(c)

Idea

a b d e

11

What do we need to “validate”?

spcl.inf.ethz.ch

@spcl_eth

Thread A: add(c)
A: find insertion point

Thread B: remove(b)

A: lock

A: validate: rescan

A: b not reachable

return false

Validation: what could go wrong?

a b d e

a b d e
B B

a b d e
A A

12

spcl.inf.ethz.ch

@spcl_eth

Thread A: add(c)
A: find insertion point

Thread B: insert(b')

A: lock

A: validate: rescan

A: d != succ(b)

return false

Validation: what else could go wrong?

a b d e

a b d e
B B

a b d e

A A

b'

b'
13

spcl.inf.ethz.ch

@spcl_eth

private Boolean validate(Node pred, Node curr) {

Node node = head;

while (node.key <= pred.key) { // reachable?

if (node == pred)

return pred.next == curr; // connected?

node = node.next;

}

return false;

}

Validate - summary

pred curr
A A

14

spcl.inf.ethz.ch

@spcl_eth

If

• nodes b and c both locked

• node b still reachable from head

• node c still successor to b

then

• neither is in the process of being deleted

 ok to delete and return true

Correctness (remove c)

b c

15

spcl.inf.ethz.ch

@spcl_eth

If

• nodes b and d both locked

• node b still reachable from head

• node d still successor to b

then

• neither is in the process of being deleted,
therefore a new element c must appear between b and d

• no thread can add between b and d:
c cannot have appeared after our locking

 ok to return false

Correctness (remove c)

b d

16

spcl.inf.ethz.ch

@spcl_eth

Good:

 No contention on traversals.

 Traversals are wait-free.

 Less lock acquisitions.

Bad:

 Need to traverse list twice

 The contains() method needs to acquire locks

 Not starvation-free

Optimistic List

Wait-Free:
Every call finishes in a finite
number of steps (NEVER waits
for other threads).

17

Is the optimistic list
starvation-free? Why/why
not?

spcl.inf.ethz.ch

@spcl_eth

LAZY SYNCHRONISATION

18

spcl.inf.ethz.ch

@spcl_eth

Like optimistic list but

• Scan only once

• Contains() never locks

How?

• Removing nodes causes trouble

• Use deleted-markers  invariant: every unmarked node is reachable!

• Remove nodes «lazily» after marking

Lazy List

19

spcl.inf.ethz.ch

@spcl_eth

Scan list (as before)

Lock predecessor and current (as before)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g., remove(c)

Lazy List: Remove

a b c d

20

spcl.inf.ethz.ch

@spcl_eth

If a node is not marked then

• It is reachable from head

• And reachable from its predecessor

A: remove(c)
lock

check if b or c are marked

not marked? ok to delete:

mark c

delete c

Key invariant

a b c d

21

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
int key = item.hashCode();
while (true) { // optimistic, retry
Node pred = this.head;
Node curr = head.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

}
pred.lock();
try {
curr.lock();
try {
// remove or not

} finally { curr.unlock(); }
} finally { pred.unlock(); }

}
}

Remove method

22

if (!pred.marked && !curr.marked &&

pred.next == curr) {

if (curr.key != key)

return false;

else {

curr.marked = true; // logically remove

pred.next = curr.next; // physically remove

return true;

}

}

spcl.inf.ethz.ch

@spcl_eth

public boolean contains(T item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {
curr = curr.next;

}
return curr.key == key && !curr.marked;

}

Wait-Free Contains

23

This set data structure is again for
demonstration only. Do not use
this to implement a list! Now on
to something more practical.

spcl.inf.ethz.ch

@spcl_eth

More practical:

Lazy Skip Lists

24

Bill Pugh

spcl.inf.ethz.ch

@spcl_eth

 Collection of elements (without duplicates)

 Interface:
 add // add an element

 remove // remove an element

 find // search an element

 Assumptions:
• Many calls to find()

• Fewer calls to add() and much fewer calls to remove()

Skip list – a practical representation for sets!

25

spcl.inf.ethz.ch

@spcl_eth

 AVL trees, red-black trees, treaps, ...
 rebalancing after add and remove expensive

 rebalancing is a global operation (potentially changing the whole tree)

 particularly hard to implement in a lock-free way.

  Skip lists solve challenges probabilistically (Las Vegas style)

How about balanced trees?

26

spcl.inf.ethz.ch

@spcl_eth

 Sorted multi-level list

 Node height probabilistic, e.g., ℙ ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑛 = 0.5𝑛, no rebalancing

Skip lists

27

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

spcl.inf.ethz.ch

@spcl_eth

 Sublist relationship between levels: higher level lists are always contained
in lower-level lists. Lowest level is entire list.

Skip list property

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

28

spcl.inf.ethz.ch

@spcl_eth

 Logarithmic Search (with high probability)

 Example: Search for 8

Searching

>
>

>
>

<
< <

<
< <

< =
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

29

spcl.inf.ethz.ch

@spcl_eth

 // find node with value x

 // return -1 if not found, node level, succ, and pre otherwise

 // pre = array of predecessor node for all levels

 // succ = array of successor node for all levels

 int find(T x, Node<T>[] pre, Node<T>[] succ)

 e.g., x = 8

 returns 0

Sequential find

>
>

>
>

<
< <

<
< <

< = >
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

30

spcl.inf.ethz.ch

@spcl_eth

 // find node with value x

 // return -1 if not found, node level, succ, and pre otherwise

 // pre = array of predecessor node for all levels

 // succ = array of successor node for all levels

 int find(T x, Node<T>[] pre, Node<T>[] succ)

 e.g., x = 6

 returns -1

Sequential find

>
>

>
>

<
< <

<
<
< >

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

31

spcl.inf.ethz.ch

@spcl_eth

𝟓−∞

 Find predecessors (lock-free)

 Lock predecessors

 Validate (cf. Lazy Synchronisation)

add (6) – with four levels!

<
<
<
<

+∞𝟐 𝟒 𝟕 𝟖 𝟗

32

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗𝟔

 Find predecessors (lock-free)

 Lock predecessors

 Validate (cf. Lazy Synchronisation)

add (6)

 Splice

 mark fully linked

 Unlock

<
<

<
<
<

33

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

 find predecessors

 lock victim

 logically remove victim (mark)

remove(5)

 Lock predecessors and validate

<
<
<
<

34

spcl.inf.ethz.ch

@spcl_eth

−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

 find predecessors

 lock victim

 logically remove victim (mark)

remove(5)

 Lock predecessors and validate

 physically remove

 unlock

<
<
<
<

35

spcl.inf.ethz.ch

@spcl_eth

 sequential find() & not logically removed & fully linked

 even if other nodes are removed, it stays reachable

 contains is wait-free (while add and remove are not)

contains(8)

>
>

>
>

<
< <

<
< <

< =
−∞ +∞𝟐 𝟒 𝟓 𝟕 𝟖 𝟗

36

spcl.inf.ethz.ch

@spcl_eth

 Practical parallel datastructure

 Code in book (latest revision!) – 139 lines
 Too much to discuss in detail here

 Review and implement as exercise

37

Skip list

spcl.inf.ethz.ch

@spcl_eth

 Spinlocks vs Scheduled Locks

 Lock-free programming

 Lock-free data structures: stack and list set

Now back to locks to motivate lock-free

Literature:
-Herlihy Chapter 11.1 – 11.3
-Herlihy Chapter 9.8

38

spcl.inf.ethz.ch

@spcl_eth

• Scheduling fairness / missing FIFO behavior.
• Solved with Queue locks – not presented in class but very nice!

• Computing resources wasted, overall performance degraded, particularly
for long-lived contention.

• No notification mechanism.

Reminder: problems with spinlocks

39

spcl.inf.ethz.ch

@spcl_eth

 Locks that suspend the execution of threads while they wait. Semaphores,
mutexes and monitors are typically implemented using a scheduled lock.

Locks with waiting/scheduling

wait

waiting entry

monitor

waiting condition

method call

notification

Waiting queues
require protection:
spinlocks!

40

spcl.inf.ethz.ch

@spcl_eth

 Require support from the runtime system (OS, scheduler).

 Data structures for scheduled locks need to be protected against
concurrent access, again using spinlocks, if not implemented lock-free
( this lecture).

 Such locks have a higher wakeup latency (need to involve some scheduler).

 Hybrid solutions: try access with spinlock for a certain duration before
rescheduling.
 Cf. “competitive spinning” (much later)

Locks with waiting/scheduling

41

spcl.inf.ethz.ch

@spcl_eth

 Uncontended case
• when threads do not compete for the lock

• lock implementations try to have minimal overhead

• typically "just" the cost of an atomic operation

 Contended case
• when threads do compete for the lock

• can lead to significant performance degradation

• also, starvation

• there exist lock implementations that try to address these issues

Locks performance





42

spcl.inf.ethz.ch

@spcl_eth

Locks are pessimistic by design
• Assume the worst and enforce mutual exclusion

Performance issues
• Overhead for each lock taken even in uncontended case

• Contended case leads to significant performance degradation

• Amdahl's law!

Blocking semantics (wait until acquire lock)
• If a thread is delayed (e.g., scheduler) when in a critical section → all threads suffer

• What if a thread dies in the critical section

• Prone to deadlocks (and also livelocks)

• Without precautions, locks cannot be used in interrupt handlers

Disadvantages of locking

43

spcl.inf.ethz.ch

@spcl_eth

Lock-Free Programming

44

spcl.inf.ethz.ch

@spcl_eth

 Deadlock: group of two or more competing processes are mutually blocked
because each process waits for another blocked process in the group to
proceed

 Livelock: competing processes are able to detect a potential deadlock but
make no observable progress while trying to resolve it

 Starvation: repeated but unsuccessful attempt of a recently unblocked
process to continue its execution

Recap: Definitions for blocking synchronization

45

spcl.inf.ethz.ch

@spcl_eth

 Lock-freedom: at least one thread always makes progress even if other
threads run concurrently.
Implies system-wide progress but not freedom from starvation.

 Wait-freedom: all threads eventually make progress.
Implies freedom from starvation.

Definitions for Lock-free Synchronisation

implies

46

spcl.inf.ethz.ch

@spcl_eth

Non-blocking
(no locks)

Blocking
(locks)

Everyone makes progress Wait-free Starvation-free

Someone make progress Lock-free Deadlock-free

Progress conditions with and without locks

47

spcl.inf.ethz.ch

@spcl_eth

Locks/blocking: a thread can indefinitely delay another thread

Non-blocking: failure or suspension of one thread cannot
cause failure or suspension of another thread !

Non-blocking Algorithms

48

spcl.inf.ethz.ch

@spcl_eth

compare old with data
at memory location

if and only if data at memory
equals old overwrite data with
new

return previous memory value
(in Java: return if success)

int CAS (memref a, int old, int new)

oldval = mem[a];

if (old == oldval)

mem[a] = new;

return oldval;

CAS (again)

at
o

m
ic

CAS is more powerful than TAS as
we will see later

CAS can be implemented wait-free
(!) by hardware.

49

spcl.inf.ethz.ch

@spcl_eth

public class CasCounter {
private AtomicInteger value;

public int getVal() {
return value.get();

}

// increment and return new value
public int inc() {

int v;
do {

v = value.get();
} while (!value.compareAndSet(v, v+1));
return v+1;

}
}

Mechanism

(a) read current value v

(b) modify value v'

(c) try to set with CAS

(d) return if success
restart at (a) otherwise

Positive result of CAS of (c) suggests
that no other thread has written
between (a) and (c)

Non-blocking counter
Deadlock/Starvation?

Assume one thread dies.
Does this affect other threads?

What happens if
some processes see

the same value?

50

spcl.inf.ethz.ch

@spcl_eth

Positive result of CAS suggests that no other thread has written

It is not always true, as we will find out ( ABA problem).

However, it is still THE mechanism to check for exclusive access in lock-free programming.

Sidenote: maybe transactional memory will become competitive at some point

Handle CAS with care

51

spcl.inf.ethz.ch

@spcl_eth

Lock-Free Stack

52

spcl.inf.ethz.ch

@spcl_eth

public static class Node {
public final Long item;
public Node next;

public Node(Long item) {
this.item = item;

}

public Node(Long item, Node n) {
this.item = item;
next = n;

}

}

Stack Node

item
next

item
next

item
next

NULL

53

spcl.inf.ethz.ch

@spcl_eth

public class BlockingStack {

Node top = null;

synchronized public void push(Long item) {

top = new Node(item, top);

}

synchronized public Long pop() {

if (top == null)

return null;

Long item = top.item;

top = top.next;

return item;

}

}

Blocking Stack

top
item
next

item
next

item
next

NULL

54

spcl.inf.ethz.ch

@spcl_eth

public class ConcurrentStack {

AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { … }

public Long pop() { … }

}

Non-blocking Stack

top
item
next

item
next

item
next

NULL

55

spcl.inf.ethz.ch

@spcl_eth

public Long pop() {

Node head, next;

do {

head = top.get();

if (head == null) return null;

next = head.next;

} while (!top.compareAndSet(head, next));

return head.item;

}

Pop

A

B

C

NULL

top

head

next

56

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {

Node newi = new Node(item);

Node head;

do {

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

Push

A

B

C

NULL

top

head

newi

57

spcl.inf.ethz.ch

@spcl_eth

Lock-free programs are deadlock-free by design.

How about
performance?

n threads

100,000 push/pop operations

10 times

What's the benefit?

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140

locked/
blocking

lock-free

#threads

time
(ms)

58

spcl.inf.ethz.ch

@spcl_eth

A lock-free algorithm does not automatically provide better performance
than its blocking equivalent!

Atomic operations are expensive and contention can still be a problem.

 Backoff, again.

Performance

59

spcl.inf.ethz.ch

@spcl_eth

With backoff

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140

locked/
blocking

lock-free

lock-free
with backoff


#threads

time
(ms)

60

spcl.inf.ethz.ch

@spcl_eth

LOCK FREE LIST SET
(NOT SKIP LIST!)

Some of the material from "Herlihy: Art of
Multiprocessor Programming"

61

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: add(b')

ok?

Does this work?

a b c d

A: CAS(b.next,c,d)

b'

CAS decides who wins  this seems to work

B: CAS(b.next,c,b')

So does this CAS approach
work generally??

62

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: remove(b)

c not deleted! 

Another scenario

a b c d

CASCAS

63

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: add(c')

c' not added! 

Mark Bit Approach?

a b c d

B: CAS(c.next,d,c')

c'

A: CAS(b.next,c,d)

A: CAS(c.mark,false,true)

B: c.mark ?

64

spcl.inf.ethz.ch

@spcl_eth

The difficulty that arises in this and many other problems is:

 We cannot (or don't want to) use synchronization via locks

 We still want to atomically establish consistency of two things
Here: mark bit & next-pointer

The Problem

65

spcl.inf.ethz.ch

@spcl_eth

Java.util.concurrent.atomic

AtomicMarkableReference<V> {

boolean attemptMark(V expectedReference, boolean newMark)

boolean compareAndSet(V expectedReference, V newReference,
boolean expectedMark, boolean newMark)

V get(boolean[] markHolder)

V getReference()

boolean isMarked()

set(V newReference, boolean newMark)

}

The Java Solution

DCAS on V
and mark

66

address F

mark bitreference

spcl.inf.ethz.ch

@spcl_eth

 Atomically
 Swing reference and

 Update flag

 Remove in two steps
 Set mark bit in next field

 Redirect predecessor’s pointer

The Algorithm using AtomicMarkableReference

67

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

Algorithm Idea

a b c d

1. try to set mark (c.next)
2. try CAS(

[b.next.reference, b.next.marked],
[c,unmarked], [d,unmarked]);

①Mark

②DCAS

68

Why “try to”? How can
it fail? What then?

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: remove(b)

c remains marked  (logically deleted)

It helps!

a b c d

1. try to set mark (c.next)
2. try CAS(

[b.next.reference, b.next.marked],
[c,unmarked], [d,unmarked]);

1. try to set mark (b.next)
2. try CAS(

[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);

①Mark

②DCAS fails!

①Mark

②DCAS

69

spcl.inf.ethz.ch

@spcl_eth

Q: what do you do when you find a “logically” deleted node in your path?

A: finish the job.
CAS the predecessor’s next field

Proceed (repeat as needed)

Traversing the List

a c d

70

spcl.inf.ethz.ch

@spcl_eth

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
while (true) {

pred = head;
curr = pred.next.getReference();
boolean done = false;
while (!done) {

marked = curr.next.get(marked);
succ = marked[1:n]; // pseudo-code to get next ptr
while (marked[0] && !done) { // marked[0] is marked bit

if pred.next.compareAndSet(curr, succ, false, false) {
curr = succ;
succ = curr.next.get(marked);

}
else done = true;

}
if (!done && curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

} } }

Find Node
class Window {

public Node pred;
public Node curr;
Window(Node pred, Node curr) {

this.pred = pred;
this.curr = curr;

}
}

lo
o

p
 o

ve
r

n
o

d
es

 u
n

ti
l

p
o

si
ti

o
n

 f
o

u
n

d

if marked nodes are found,
delete them, if deletion fails
restart from the beginning

71

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
Boolean snip;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {

Node succ = curr.next.getReference();
snip = curr.next.attemptMark(succ, true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

}
}

}

Remove
Find element and prev
element from key

If no such element -> return
false

Otherwise try to logically
delete (set mark bit).

Try to physically delete the
element, ignore result

If no success, restart from the
very beginning

a b c d

①

②

①

②

72

spcl.inf.ethz.ch

@spcl_eth

public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, false))

return true;
}

}
}

Add

Find element and prev
element from key

If element already exists,
return false

Otherwise create new node,
set next / mark bit of the
element to be inserted

and try to insert. If insertion
fails (next set by other thread
or mark bit set), retry

73

spcl.inf.ethz.ch

@spcl_eth

 We used a special variant of DCAS (double compare and swap) in order to be
able check two conditions at once.
This DCAS was possible because one bit was free in the reference.

 We used a lazy operation in order to deal with a consistency problem. Any
thread is able to repair the inconsistency.
If other threads would have had to wait for one thread to cleanup the
inconsistency, the approach would not have been lock-free!

 This «helping» is a recurring theme, especially in wait-free algorithms where,
in order to make progress, threads must help others (that may be off in the
mountains )

Observations

74

