ETHzurich

5 DINFK

TORSTEN HOEFLER

Parallel Programming
Lock trlcks skip lists

J";;‘ MABIAR, Y

bl T UROTE A SCRIPT TO | WANNA SEE THE CODE?
HJTOf"IHTE THAT THING. T WOULD IF YOU HADNT

OH, coou SAID THAT IN THE TONE
OF \OICE OF "LJANNA

L.HI'[Yo/ ..
LJRDT!—E T2 SEE A DEAD BODY?
v)

£ o Ao bk .

| H ‘ ﬁ ' L Qd(- u.'l-' st
y " a'," ‘ "” /‘ 7
TR -«+ ..'.'"ﬁ &J&‘é 3

A NI sl el Neuromorphic Advances Promise Neural Network
THAT YOU CAN EITHER, COME LOOK AT IT NOL), OR Performance Jump

WAIT A FEW WEEKS UNTIC IT BECOMES A PROBLEM.

AND BECAUSE YOURE LUCKY THAT THE
PEOPLE. ARDUND YOU UNDERSTAND THAT THEY' gl
CREATE MORE. PROBLEMS THAN THEY SOLVE. [l April 30, 2019

}l Yac

By Siaff

Researchers from Sandia National Laboratories, Stanford University, and
UMass Amherst report developing a parallel programming approach for a

- novel ionic floating-gate memory array that promises to overcome what's been
a persistent challenge to improving neuromorphic computing performance on
artificial neural networks (ANN)

The new work — which involves breakthroughs in programming and the
broader fields of organic elecironics and solid-state electrochemistry — was
reported in Science last weelf (Parallel programming ¢f an ionic floating-gate
memory array for scalable neuromorphic computing).

While there's been plenty of work on the idea that neuromorphic computers
will overcome efficiency bottlenecks inherent to conventional computing
through parallel programming and read-out of artificial neural network weights
in a crossbar memory array, accomplishing that goal has been difficult. The
researchers note that the need for “selective and linear weight updates and
" <10 nanoampere read currents for learning” have restrained efficiency gains
%4 compared to conventional digital computing.

{ | heir solution is a new device and programming approach.

Last week

Producer/Consumer in detail

= Queues, implementation

= Deadlock cases (repetition)
Monitors (repetition)

= Condition variables, wait, signal, etc.
= Java’s thread state machine

Sleeping barber

= Optimize (avoid) notifications using counters

RW Locks

= Fairness is an issue (application-dependent)

Lock tricks on the list-based set example
* Fine-grained locking ... continued now

spcl.inf.ethz.ch
Y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Learning goals today

= Finish lock tricks
= Optimistic synchronization
= Lazy synchronization

= Conflict-minimizing structures (probabilistic)
= Example: skip lists

= Lock scheduling
= Sleeping vs. spinlock (deeper repetition)

= Lock-free
= Stack, list

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Fine grained Locking

Often more intricate than visible at a first sight
* requires careful consideration of special cases

Idea: split object into pieces with separate locks
* no mutual exclusion for algorithms on disjoint pieces

spcl.inf.ethz.ch 5o o
worien ETHZzUrich

Let's try this

remove(c)

. : | : . >< : | : P---*

Is this ok?

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Let's try this

Thread A: remove(c)
Thread B: remove(b)

g @ @
\W

c not deleted! ®

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

What's the problem?

* When deleting, the next field of next is read, i.e., next also has to be
protected.

= A thread needs to lock both, predecessor and the node to be deleted
(hand-over-hand locking).

g 8, &
~

- -

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Remove method

/\ : hand over hand
public boolean remove(T item) { fﬂ ﬁ) ﬁ)

Node pred = null, curr = null; EEE.. ER. R

int key = item.hashCode();

head°10Ck()3 while (curr.key < key) {

try { pred.unlock();
pred = head; pred = curr; // pred still locked
curr = pred,next; curr = curr.next;
curr.lock(); curr.lock(); // lock hand over hand
try { }

// find and remove if (curr.key == key) {
pred.next = curr.next; // delete

} finally { curr.unlock(); } etUrn] Erue:
} 'Flnally { pr‘ed.un].OCk(); } } remark: sentinel at front and end J

} of list prevents an exception here
return false;

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Disadvantages?

= Potentially long sequence of acquire / release before the intended action

can take place
* One (slow) thread locking "early nodes" can block another thread wanting

to acquire "late nodes"”

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

TRUST ME, I'M A

Al

OPTIMISTIC SYNCHRONIZATION — -
PROGRAMMER

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Idea

Find nodes without locking,
 then lock nodes and What do we need to “validate”?
* check that everything is ok (validation)

e.g., add(c)

[r~ -
» f > L > .

- -

Genien ETHZzrich
Validation: what could go wrong?

Thread A: add(c)

A: find insertion point = pe------

| ! i 1

. ‘ l‘ i l‘ i
- |] - ! v i » f v

0 3 0 3

Thread B: remove(b) Ii

A: lock
A: validate: rescan
A: b not reachable

>return false .

Genien ETHZzrich
Validation: what else could go wrong?

Thread A: add(c)

A: find insertion point = -

] 1 0)

. ‘ » | » i
Ll ¥ l - y LJ l Ll y L

! 4 ! d

Thread B: insert(b')

A: lock
A: validate: rescan
A: d != succ(b)

> return false .

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Validate - summary

private Boolean validate(Node pred, Node curr) {
Node node = head;
while (node.key <= pred.key) { // reachable?
if (node == pred)
return pred.next == curr; // connected?
node = node.next;

¥

return false;

¥

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Correctness (remove c)

If

* nodes b and c both locked

* node b still reachable from head

* node c still successortob

then

* neither is in the process of being deleted
=» ok to delete and return true

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Correctness (remove c)

If
* nodes b and d both locked n
 node b still reachable from head

e node d still successortob
then

* neitheris in the process of being deleted,
therefore a new element ¢ must appear between b and d

* no thread can add between b and d:
c cannot have appeared after our locking

=» ok to return false

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Optimistic List

Good.:
= No contention on traversals. Wait-Free:
. Every call finishes in a finite
= Traversals are wait-free. number of steps (NEVER waits
. e . for other threads).
= Less lock acquisitions.
Bad: Is the optimistic list
. . starvation-free? Why/why
= Need to traverse list twice not?

* The contains() method needs to acquire locks
= Not starvation-free

LAZY SYNCHRONISATION

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Laziness

The quality that makes you go to great
effort to reduce overall energy

expenditure [...] the first great virtue of
a programmer.

Larry Wall, Programming Perl
(emphasis mine)

18

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Lazy List

Like optimistic list but

* Scan only once

* Contains() never locks

How?

* Removing nodes causes trouble

* Use deleted-markers = invariant: every unmarked node is reachable!
* Remove nodes «lazily» after marking

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Lazy List: Remove

Scan list (as before)

Lock predecessor and current (as before)
Logical delete: mark current node as removed
Physical delete: redirect predecessor's next

o4 0

e.g., remove(c)

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Key invariant

If a node is not marked then
° |tis reachable from head
* And reachable from its predecessor

A: remove(c) . ‘ Ii Ii ‘
lock ' | ' |]]
check if b or c are marked _/‘

not marked? ok to delete:

mark c
delete c

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Remove method

public boolean remove(T item) {
int key = item.hashCode();
while (true) { // optimistic, retry

Node pred = this.head; if (!pred.marked && !curr.marked &&
Node curr = head.next; pred.next == curr) {
while (curr.key < key) { if (curr.key != key)

pred = curr;

curr = curr.next; return false;

} else {
pred.lock(); curr.marked = true; // logically remove
try { pred.next = curr.next; // physically remove
curr.lock(); " t .
try { return true;
// remove or not }
} finally { curr.unlock(); } }
} finally { pred.unlock(); }
}

¥

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Wait-Free Contains

public boolean contains(T item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {
curr = curr.next;

¥

return curr.key == key && !curr.marked;

} This set data structure is again for
demonstration only. Do not use
this to implement a list! Now on
to something more practical.

More practical:

Lazy Skip Lists

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Bill Pugh received a Ph.D. in Computer Science (with a minor in Acting) from Cornell University. He was a professor at the
University of Maryland for 23.5 years, and in January 2012 became professor emeritus to start new adventure somewhere at the
crossroads of software development and entrepreneurship.

Bill Pugh is a Packard Fellow, and invented Skip Lists, a randomized data structure that is widely taught in undergraduate data
structure courses. He has also made research contributions in in techniques for analyzing and transforming scientific codes for
execution on supercomputers, and in a number of issues related to the Java programming language, including the development
of ISR 133 - Java Memory Model and Thread Specification Revision. Prof. Pugh's current research focus is on developing
tools to improve software productivity, reliability and education. Current research projects include EindBugs, a static analysis
tool for Java, and Marmoset, an innovative framework for improving the learning and feedback cycle for student programming
projects.

Prof. Pugh has spoken at numerous developer conferences, including JavaOne, Goto/Jaco in Aarhus, the Devoxx conference in
Antwerp, and CodeMash. At JavaOne, he received six JavaOne RockStar awards, given to the speakers that receive the highest
evaluations from attendees.

Professor Pugh spent the 2008-2009 school year on sabbatical at Google, where, among other activities, he learned how to eat
fire.

Bill Pugh

24

emeen ETHZzUrich
Skip list — a practical representation for sets!

= Collection of elements (without duplicates)
" |nterface:

= add // add an element
= pemove // remove an element
= find // search an element

= Assumptions:
e Many calls to find()
* Fewer calls to add() and much fewer calls to remove()

How about balanced trees?

= AVL trees, red-black trees, treaps, ...
= rebalancing after add and remove expensive

= rebalancing is a global operation (potentially changing the whole tree)
= particularly hard to implement in a lock-free way.

= - Skip lists solve challenges probabilistically (Las Vegas style)

spcl.inf.ethz.ch
Y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Skip lists

= Sorted multi-level list
* Node height probabilistic, e.g., P(height = n) = 0.5", no rebalancing

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Skip list property

= Sublist relationship between levels: higher level lists are always contained
in lower-level lists. Lowest level is entire list.

v

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Searching

= Logarithmic Search (with high probability)
= Example: Search for 8

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Sequential find

= // find node with value x

= // return -1 if not found, node level, succ, and pre otherwise
= // pre = array of predecessor node for all levels

= // succ = array of successor node for all levels

= int find(T x, Node<T>[] pre, Node<T>[] succ)

" e.g8., X =8

< g >
= returns © < ¥ < (s

30

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Sequential find

= // find node with value x

= // return -1 if not found, node level, succ, and pre otherwise
= // pre = array of predecessor node for all levels

= // succ = array of successor node for all levels

= int find(T x, Node<T>[] pre, Node<T>[] succ)

"= e.g., X =6 »
= returns -1 !!

SEATA A A
V.
V.V

gy

31

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

add (6) — with four levels!

" Find predecessors (lock-free)
= Lock predecessors

= Validate (cf. Lazy Synchronisation)

add (6)

" Find predecessors (lock-free)
= Lock predecessors

= Validate (cf. Lazy Synchronisation)

= Splice
= mark fully linked
= Unlock

spcl.inf.ethz.ch

Y @spcl_eth

ETH:zurich

-+ 00

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

remove(5)

= find predecessors = Lock predecessors and validate

" |lock victim
" Jogically remove victim (mark)

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

remove(5)

= find predecessors = Lock predecessors and validate

" lock victim = physically remove

" |ogically remove victim (mark) = unlock

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

contains(8)

" sequential find() & not logically removed & fully linked
= even if other nodes are removed, it stays reachable
= contains is wait-free (while add and remove are not)

<
<

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Skip list

= Practical parallel datastructure

* Codein book (latest revision!) — 139 lines
= Too much to discuss in detail here

= Review and implement as exercise

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Now back to locks to motivate lock-free

= Spinlocks vs Scheduled Locks
" Lock-free programming
= Lock-free data structures: stack and list set

Literature:
-Herlihy Chapter 11.1 - 11.3
-Herlihy Chapter 9.8

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Reminder: problems with spinlocks

* Scheduling fairness / missing FIFO behavior.
* Solved with Queue locks — not presented in class but very nice!

 Computing resources wasted, overall performance degraded, particularly
for long-lived contention.

* No notification mechanism.

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Locks with waiting/scheduling

" Locks that suspend the execution of threads while they wait. Semaphores,
mutexes and monitors are typically implemented using a scheduled lock.

method call : E
‘.................x P 0000000 0O)

waiting entry

.0'10...0.vo ooooooooo *

\

‘ Waiting queues * monitor
require protection:

spinlocks!

—

* notification

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Locks with waiting/scheduling

" Require support from the runtime system (OS, scheduler).

= Data structures for scheduled locks need to be protected against
concurrent access, again using spinlocks, if not implemented lock-free
(= this lecture).

= Such locks have a higher wakeup latency (need to involve some scheduler).

= Hybrid solutions: try access with spinlock for a certain duration before
rescheduling.
= Cf. “competitive spinning” (much later)

Locks performance

= Contended case

Uncontended case

when threads do not compete for the lock

lock implementations try to have minimal overhead
typically "just"” the cost of an atomic operation

when threads do compete for the lock

can lead to significant performance degradation
also, starvation

there exist lock implementations that try to address these issues

spcl.inf.ethz.ch
Y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Disadvantages of locking

Locks are pessimistic by design
e Assume the worst and enforce mutual exclusion

Performance issues

* Overhead for each lock taken even in uncontended case
 Contended case leads to significant performance degradation
* Amdabhl's law!

Blocking semantics (wait until acquire lock)

* If athread is delayed (e.g., scheduler) when in a critical section - all threads suffer
 What if a thread dies in the critical section

* Prone to deadlocks (and also livelocks)

* Without precautions, locks cannot be used in interrupt handlers

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Lock-Free Programming

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Recap: Definitions for blocking synchronization

= Deadlock: group of two or more competing processes are mutually blocked
because each process waits for another blocked process in the group to
proceed

= Livelock: competing processes are able to detect a potential deadlock but
make no observable progress while trying to resolve it

= Starvation: repeated but unsuccessful attempt of a recently unblocked
process to continue its execution

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Definitions for Lock-free Synchronisation

= Lock-freedom: at least one thread always makes progress even if other
threads run concurrently.
Implies system-wide progress but not freedom from starvation.

tmplies

* Wait-freedom: all threads eventually make progress.
Implies freedom from starvation.

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Progress conditions with and without locks

Wait-free Starvation-free

Lock-free Deadlock-free

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Non-blocking Algorithms

Locks/blocking: a thread can indefinitely delay another thread

Non-blocking: failure or suspension of one thread cannot
cause failure or suspension of another thread !

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

CAS (again)

compare old with data
at memory location

if and only if data at memory
equals old overwrite data with
new

return previous memory value
(in Java: return if success)

int CAS (memref a, int old, int new)
oldval = mem]la];
if (old == oldval)

memla] = new;

atomic

return oldval;

CAS is more powerful than TAS as
we will see later

CAS can be implemented wait-free
(1) by hardware.

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Non-blocking counter

Deadlock/Starvation?

public class CasCounter {
private AtomicInteger value;

public int getVal() {
return value.get();
}

// increment and return new value

pub;lic int inc() { What happens if
int v;

some processes see
do { P

v = value.get(); the same value?
} while (!value.compareAndSet(v, v+1));
return v+1;

Assume one thread dies.
Does this affect other threads?

Mechanism

(a) read current value v
(b) modify value V'

(c) try to set with CAS

(d) return if success
restart at (a) otherwise

Positive result of CAS of (c) suggests
that no other thread has written
between (a) and (c)

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Handle CAS with care

Positive result of CAS suggests that no other thread has written

It is not always true, as we will find out (- ABA problem).

However, it is still THE mechanism to check for exclusive access in lock-free programming.

Sidenote: maybe transactional memory will become competitive at some point

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Lock-Free Stack

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Stack Node

public static class Node {
public final Long item;

item

public Node next; next

public Node(Long item) { nj;

this.item = item; next

) |

public Node(Long item, Node n) { iEQ

this.item = item; l
next = n;

) NULL

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Blocking Stack

public class BlockingStack {
Node top = null;

top —> ::)r::
synchronized public void push(Long item) { ‘l
top = new Node(item, top); :

Item

} next
synchronized public Long pop() { ‘l'
if (top == null) ::;:

return null;

Long item = top.item; ‘l'
top = top.next; NULL

return item;

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Non-blocking Stack

public class ConcurrentStack {
AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { .. } it
. Item
public Long pop() { .. } top =2 | et

item
next

item
next

NULL

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Pop

public Long pop() { head
Node head, next;

do { top
head = top.get();
if (head == null) return null; next

next = head.next;
} while (!top.compareAndSet(head, next));

return head.item;

C€E— O €&— W «— >

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Push
public void push(Long item) { newi
Node newi = new Node(item);
Node head;
top
do {
head = top.get(); head

newi.next = head;
} while (!top.compareAndSet(head, newi));

=

C€E— O €— W €&— > <—

What's the benefit?

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Lock-free programs are deadlock-free by design.

How about
performance?

n threads
100,000 push/pop operations
10 times

time
(ms)

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

lock-free

locked/
blocking

20 40 60 80 100 120 140

H#Hthreads

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Performance

A lock-free algorithm does not automatically provide better performance
than its blocking equivalent!
Atomic operations are expensive and contention can still be a problem.

— Backoff, again.

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

With backoff

50000
lock-free
45000
40000
35000
30000
. locked/
time 5000 blocking
(ms)
20000
15000
10000
o0 - lock-free
I .
O —=0=s with backoff
0 20 40 60 80 100 120 140 @

H#threads

60

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

LOCK FREE LIST SET

(NOT SKIP LIST!)

Some of the material from "Herlihy: Art of
Multiprocessor Programming"

61

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Does this work?

A: remove(c) B: CAS(b.next,c,b')

B: add(b') R -\

A: CAS(b.next,c,d)

ok? CAS decides who wins = this seems to work

So does this CAS approach
work generally??

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Another scenario

A: remove(c)
B: remove(b)

- -

¢ not deleted! ®

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Mark Bit Approach?
B: c.mark ?

A: remove(c) B: CAS(c.next,d,c')

B: add(c')
. | l | Q

A: CAS(c.mark,false,true)
A: CAS(b.next,c,d)

- -

¢' not added! ®

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

The Problem

The difficulty that arises in this and many other problems is:
"= We cannot (or don't want to) use synchronization via locks

= We still want to atomically establish consistency of two things
Here: mark bit & next-pointer

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

The Java Solution

Java.util.concurrent.atomic
AtomicMarkableReference<V> {
boolean attemptMark(V expectedReference, boolean newMark) DCASonV

boolean compareAndSet(V expectedReference, V newReference, and mark
boolean expectedMark, boolean newMark)
V get(boolean[] markHolder)
V getReference()
boolean isMarked()
set(V newReference, boolean newMark)
} reference mark bit

spcl.inf.ethz.ch

The Algorithm using AtomicMarkableReference

= Atomically
= Swing reference and
= Update flag
= Remove in two steps
= Set mark bit in next field
= Redirect predecessor’s pointer

Y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Algorithm Ildea

Why “try to”? How can 1. try to set mark (c.next)

A: remove(c) it fail? What then? 2. try CAS(
[b.next.reference, b.next.marked],

[c,unmarked], [d,unmarked]);

@Mark

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

It helps!

1. try to set mark (c.next)
A: remove(c) 2. try CAS(
B: r'emove(b) [b.next.reference, b.next.marked],
) [c,unmarked], [d,unmarked]);

OMark MMark

1. try to set mark (b.next)

2. try CAS(
[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);

c remains marked ® (logically deleted)

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Traversing the List

Q: what do you do when you find a “logically” deleted node in your path?
A: finish the job.

CAS the predecessor’s next field
Proceed (repeat as needed)

. ’ | x " O ' [===*

spcl.inf.ethz.ch 0o o
vowien ETHZzirich

Find

public Window find(Node head, int key) {

Node

class Window {

Node pred = null, curr = null, succ = null; public Node pred;

boolean[] marked = {false}; boolean snip;
while (true) {

loop over nodes until

}ro}

pred = head;
curr = pred.next.getReference();
boolean done = false; }
while (!done) { }
marked = curr.next.get(marked);
succ = marked[1:n]; // pseudo-code to get next ptr
while (marked[@] && !done) { // marked[@] is marked bit

) if pred.next.compareAndSet(curr, succ, false, false) {

S curr = succ;

2 succ = curr.next.get(marked);

s 1}

= else done = true;

S } if marked nodes are found,

if (!done && curr.key >= key)
return new Window(pred, curr);

pred = curr;

curr = succ;

delete them, if deletion fails
restart from the beginning

this.pred
this.curr

public Node curr;
Window(Node pred, Node curr) {

pred;
curr;

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Remove

Find element and prev
public boolean remove(T item) { element from key

Boolean snip;
while (true) { If no such element -> return
Window window = find(head, key); false
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

Otherwise try to logically
return false;

delete (set mark bit).

} else {
Node succ = curr.next.getReference(); If no success, restart from the
snip = curr.next.attemptMark(succ, true); very beginning
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false); Try to physically delete the
return true; element, ignore result (2)

v
v

- -

v
v

Z

-

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Add
public boolean add(T item) { Find element and prev
boolean splice; element from key

while (true) {
Window window = find(head, key); If element already exists,
Node pred = window.pred, curr = window.curr; P R e
if (curr.key == key) {

return false; ,
? Otherwise create new node,

} else { . ' set next / mark bit of the
Node node = new Node(item); element to be inserted

node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, false))

return true; - i i
? and try to insert. If insertion

¥ fails (next set by other thread
} or mark bit set), retry

spcl.inf.ethz.ch 5o o
vowien ETHZzirich

Observations

= We used a special variant of DCAS (double compare and swap) in order to be
able check two conditions at once.

This DCAS was possible because one bit was free in the reference.

= We used a lazy operation in order to deal with a consistency problem. Any
thread is able to repair the inconsistency.
If other threads would have had to wait for one thread to cleanup the
inconsistency, the approach would not have been lock-free!

" This «helping» is a recurring theme, especially in wait-free algorithms where,
in order to make progress, threads must help others (that may be off in the
mountains ©)

