
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Without locks II

Source: slashdot.com

spcl.inf.ethz.ch

@spcl_eth

 Lock tricks on the list-based set example
 Fine-grained locking

 Optimistic locking

 Lazy (removal) locking

 Skip lists
 Example for probabilistic parallel performance – conflict reduction

 Lock-free programming
 Reminder of atomics (CAS)

 Non-blocking counter

Last week

2

spcl.inf.ethz.ch

@spcl_eth

 Lock-free
 Stack

 List

 Unbounded Queues
 More complex example for lock-free, how to design a datastructure

 Memory Reuse and the ABA Problem
 Understand one of the most complex pitfalls in shared memory parallel programming

Learning goals today

3

Literature:
Herlihy: Chapter 10

spcl.inf.ethz.ch

@spcl_eth

public class CasCounter {
private AtomicInteger value;

public int getVal() {
return value.get();

}

// increment and return new value
public int inc() {

int v;
do {

v = value.get();
} while (!value.compareAndSet(v, v+1));
return v+1;

}
}

Mechanism

(a) read current value v

(b) modify value v'

(c) try to set with CAS

(d) return if success
restart at (a) otherwise

Positive result of CAS of (c) suggests
that no other thread has written
between (a) and (c)

Non-blocking counter
Deadlock/Starvation?

Assume one thread dies.
Does this affect other threads?

What happens if
some processes see

the same value?

4

Why not “guarantees”?

spcl.inf.ethz.ch

@spcl_eth

Positive result of CAS suggests that no other thread has written

It is not always true, as we will find out ( ABA problem).

However, it is still THE mechanism to check for exclusive access in lock-free programming.

Sidenotes:

 maybe transactional memory will become competitive at some point

 LL/SC or variants thereof may give stronger semantics avoiding ABA

Handle CAS with care

5

spcl.inf.ethz.ch

@spcl_eth

Lock-Free Stack

6

spcl.inf.ethz.ch

@spcl_eth

public static class Node {
public final Long item;
public Node next;

public Node(Long item) {
this.item = item;

}

public Node(Long item, Node n) {
this.item = item;
next = n;

}

}

Stack Node

item
next

item
next

item
next

NULL

7

spcl.inf.ethz.ch

@spcl_eth

public class BlockingStack {

Node top = null;

synchronized public void push(Long item) {

top = new Node(item, top);

}

synchronized public Long pop() {

if (top == null)

return null;

Long item = top.item;

top = top.next;

return item;

}

}

Blocking Stack

top
item
next

item
next

item
next

NULL

8

spcl.inf.ethz.ch

@spcl_eth

public class ConcurrentStack {

AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { … }

public Long pop() { … }

}

Non-blocking Stack

top
item
next

item
next

item
next

NULL

9

spcl.inf.ethz.ch

@spcl_eth

public Long pop() {

Node head, next;

do {

head = top.get();

if (head == null) return null;

next = head.next;

} while (!top.compareAndSet(head, next));

return head.item;

}

Pop

A

B

C

NULL

top

head

next

10

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {

Node newi = new Node(item);

Node head;

do {

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

Push

A

B

C

NULL

top

head

newi

11

spcl.inf.ethz.ch

@spcl_eth

Lock-free programs are deadlock-free by design.

How about
performance?

n threads

100,000 push/pop operations

10 times

What's the benefit?

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140

locked/
blocking

lock-free

#threads

time
(ms)

12

spcl.inf.ethz.ch

@spcl_eth

A lock-free algorithm does not automatically provide better performance
than its blocking equivalent!

Atomic operations are expensive and contention can still be a problem.

 Backoff, again.

Performance

13

spcl.inf.ethz.ch

@spcl_eth

With backoff

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140

locked/
blocking

lock-free

lock-free
with backoff


#threads

time
(ms)

14

spcl.inf.ethz.ch

@spcl_eth

LOCK FREE LIST SET
(NOT SKIP LIST!)

Some of the material from "Herlihy: Art of
Multiprocessor Programming"

15

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: add(b')

ok?

Does this work?

a b c d

A: CAS(b.next,c,d)

b'

CAS decides who wins  this seems to work

B: CAS(b.next,c,b')

So does this CAS approach
work generally??

16

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: remove(b)

c not deleted! 

Another scenario

a b c d

CASCAS

17

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: add(c')

c' not added! 

Mark bit approach?

a b c d

B: CAS(c.next,d,c')

c'

A: CAS(b.next,c,d)

A: CAS(c.mark,false,true)

B: c.mark ?

18

spcl.inf.ethz.ch

@spcl_eth

The difficulty that arises in this and many other problems is:

 We cannot (or don't want to) use synchronization via locks

 We still want to atomically establish consistency of two things
Here: mark bit & next-pointer

The problem

19

spcl.inf.ethz.ch

@spcl_eth

Java.util.concurrent.atomic

AtomicMarkableReference<V> {

boolean attemptMark(V expectedReference, boolean newMark)

boolean compareAndSet(V expectedReference, V newReference,
boolean expectedMark, boolean newMark)

V get(boolean[] markHolder)

V getReference()

boolean isMarked()

set(V newReference, boolean newMark)

}

The Java solution

DCAS on V
and mark

20

address F

mark bitreference

264Bytes=562,949,953,421,312 Petabytes

spcl.inf.ethz.ch

@spcl_eth

 Atomically
 Swing reference and

 Update flag

 Remove in two steps
 Set mark bit in next field

 Redirect predecessor’s pointer

The algorithm using AtomicMarkableReference

21

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

Algorithm idea

a b c d

1. try to set mark (c.next)
2. try CAS(

[b.next.reference, b.next.marked],
[c,unmarked], [d,unmarked]);

①Mark

②DCAS

22

Why “try to”? How can
it fail? What then?

spcl.inf.ethz.ch

@spcl_eth

A: remove(c)

B: remove(b)

c remains marked  (logically deleted)

It helps!

a b c d

1. try to set mark (c.next)
2. try CAS(

[b.next.reference, b.next.marked],
[c,unmarked], [d,unmarked]);

1. try to set mark (b.next)
2. try CAS(

[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);

①Mark

②DCAS fails!

①Mark

②DCAS

23

spcl.inf.ethz.ch

@spcl_eth

Q: what do you do when you find a “logically” deleted node in your path?

A: finish the job.
CAS the predecessor’s next field

Proceed (repeat as needed)

Traversing the list

a c d

24

spcl.inf.ethz.ch

@spcl_eth

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
while (true) {

pred = head;
curr = pred.next.getReference();
boolean done = false;
while (!done) {

marked = curr.next.get(marked);
succ = marked[1:n]; // pseudo-code to get next ptr
while (marked[0] && !done) { // marked[0] is marked bit

if pred.next.compareAndSet(curr, succ, false, false) {
curr = succ;
succ = curr.next.get(marked);

}
else done = true;

}
if (!done && curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

} } }

Find node
class Window {

public Node pred;
public Node curr;
Window(Node pred, Node curr) {

this.pred = pred;
this.curr = curr;

}
}

lo
o

p
 o

ve
r

n
o

d
es

 u
n

ti
l

p
o

si
ti

o
n

 f
o

u
n

d

if marked nodes are found,
delete them, if deletion fails
restart from the beginning

25

spcl.inf.ethz.ch

@spcl_eth

public boolean remove(T item) {
Boolean snip;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {

Node succ = curr.next.getReference();
snip = curr.next.attemptMark(succ, true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

}
}

}

Remove
Find element and prev
element from key

If no such element -> return
false

Otherwise try to logically
delete (set mark bit).

Try to physically delete the
element, ignore result

If no success, restart from the
very beginning

a b c d

①

②

①

②

26

spcl.inf.ethz.ch

@spcl_eth

public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {

Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, false))

return true;
}

}
}

Add

Find element and prev
element from key

If element already exists,
return false

Otherwise create new node,
set next / mark bit of the
element to be inserted

and try to insert. If insertion
fails (next set by other thread
or mark bit set), retry

27

spcl.inf.ethz.ch

@spcl_eth

 We used a special variant of DCAS (double compare and swap) in order to be
able check two conditions at once.
This DCAS was possible because one bit was free in the reference.

 We used a lazy operation in order to deal with a consistency problem. Any
thread is able to repair the inconsistency.
If other threads would have had to wait for one thread to cleanup the
inconsistency, the approach would not have been lock-free!

 This «helping» is a recurring theme, especially in wait-free algorithms where,
in order to make progress, threads must help others (that may be off in the
mountains )

Observations

28

spcl.inf.ethz.ch

@spcl_eth

LOCK FREE UNBOUNDED QUEUE

29

spcl.inf.ethz.ch

@spcl_eth

At the heart of an Operating System is a scheduler.

A scheduler basically moves tasks between queues (or similar data structures)
and selects threads to run on a processor core.

Scheduling decisions
usually happen when
threads are created
threads end
threads block / wait
threads unblock

30

Motivation: a Lock-Free Operating System Kernel

Processor
Core

Processor
Core

Processor
Core

wait
for x

wait
for y

run

run

run

ready

Queue

spcl.inf.ethz.ch

@spcl_eth

Data structures of a runtime or kernel need to be protected against concurrent
access by
 threads and

 interrupt service routines

on different cores.

Conventionally, (spin-)locks
are employed for protection

The granularity varies.

31

Motivation: a Lock-Free Operating System Kernel

Processor
Core

Processor
Core

Processor
Core

run

run

run

wait
for x

wait
for y

ready

spcl.inf.ethz.ch

@spcl_eth

If we want to protect scheduling queues in a lock-free way, we obviously need

- an implementation of a lock-free unbounded queue
We will again meet the problem of transient inconsistencies

- If we want to use the queues in a scheduler, usually we cannot rely on
Garbage Collection, we need to reuse elements of the queue
This will lead to a difficult problem, the ABA problem

32

Motivation: a Lock-Free Operating System Kernel

spcl.inf.ethz.ch

@spcl_eth

public class Node<T> {

public T value;

public Node<T> next;

public Node(T item) {

this.item = item;

next = null

}

}

33

Queue Node

item
next

item
next

item
next

NULL

spcl.inf.ethz.ch

@spcl_eth

public class BlockingQueue<T> {

Node<T> head, tail;

public synchronized void Enqueue(T item) {

}

public synchronized T Dequeue() {

}

}

34

Blocking Queue

item
next

item
next

item
next

NULL

head

tail

spcl.inf.ethz.ch

@spcl_eth

public synchronized void Enqueue(T item) {

Node<T> node = new Node<T>(item);

if (tail != null)
tail.next = node;

else
head = node;

tail = node;
}

case tail = null

case tail != null

35

Enqueue

node node node node node node

head tail

new
①

②

head tail

new

① ②

spcl.inf.ethz.ch

@spcl_eth

36

Dequeue

case head == tail

case head != tail
node node node node node node

head tail①

②

node

head tail

①

public synchronized T Dequeue() {
T item = null;
Node<T> node = head;
if (node != null) {

item = node.item;
head = node.next;
if (head == null) tail = null;

}
return item;

}

spcl.inf.ethz.ch

@spcl_eth

It turns out that when we want to implement a lock-free queue like this, we
run into problems because of potentially simultaneous updates of
 head

 tail

 tail.next

How to solve this?

37

Observation

spcl.inf.ethz.ch

@spcl_eth

38

Idea: Sentinel at the front

S node node node node node

head tail

spcl.inf.ethz.ch

@spcl_eth

39

Sentinel at the front: Enqueue

S node node node node node

head tail

node
①

②

S

head tail

node
①

②

operations
• read/write tail.next
• read/write tail

empty Q

nonempty Q

spcl.inf.ethz.ch

@spcl_eth

40

Sentinel at the front: Dequeue

S node node node node node

head tail

S

head tail

node

① Read value

① Read value

②

②

1 element

n elements

operations
• reading head.next
• read/write head

spcl.inf.ethz.ch

@spcl_eth

Still have to update two pointers at a time!
 But enqueuers work on tail and dequeuers on head

Possible inconsistency?
 tail might (transiently) not point to the last element

What's the problem with this?
 Unacceptable that any thread has to wait for the consistency to be established -- this would be

locking camouflaged

Solution
 Threads help making progress

41

Does this help?

spcl.inf.ethz.ch

@spcl_eth

public class Node<T> {
public T item;
public AtomicReference<Node> next;

public Node(T item) {
next = new AtomicReference<Node>(null);
this.item = item;

}

public void SetItem(T item) {
this.item = item;

}
}

42

Queue Node needs Atomic next pointer

item
next

item
next

item
next

NULL

spcl.inf.ethz.ch

@spcl_eth

public class NonBlockingQueue extends Queue {
AtomicReference<Node> head = new AtomicReference<Node>();
AtomicReference<Node> tail = new AtomicReference<Node>();

public NonBlockingQueue() {
Node node = new Node(null);
head.set(node); tail.set(node);

}

public void Enqueue(T item);

public T Dequeue();
}

43

Queue

item
next

item
next

item
next

NULL

spcl.inf.ethz.ch

@spcl_eth

Enqueuer
 read tail into last

 then tries to set last.next:
CAS(last.next, null, new)

 If unsuccessful retry!

 If successful, try to set tail without retry

CAS(tail, last, new)

Dequeuer
 read head into first

 read first.next into next

 if next is available, read the item value of next

 try to set head from first to next
CAS(head, first, next)

 If unsuccessful, retry!

44

Protocol: Initial Version

node

tail

node
①

②

S node

head

① Read value

②

spcl.inf.ethz.ch

@spcl_eth

45

Protocol

node

tail

node
①

②

How can this be unsuccessful?
1. Some other thread has written last.next just before

me
2. I have read a stale version of tail either

a) because I just missed the update of other
thread

b) because the other thread failed in updating
tail, for example because it has died

If the thread dies before calling this, tail is never
updated.

Enqueuer
 read tail into last

 then tries to set last.next:
CAS(last.next, null, new)

 If unsuccessful retry!

 If successful, try to set tail without retry

CAS(tail, last, new)

spcl.inf.ethz.ch

@spcl_eth

46

Protocol

How can this be unsuccessful?
1. another thread has already removed next

S node

head

① Read value

②

Dequeuer
 read head into first

 read first.next into next

 if next is available, read the item value of next

 try to set head from first to next
CAS(head, first, next)

 If unsuccessful, retry!

spcl.inf.ethz.ch

@spcl_eth

 Thread A enqueues an element to an empty list, but has not yet adapted tail

 Thread B dequeues (the sentinel)

 Now tail points to a dequeued element.

47

One more possible inconsistency

S

tail

node

head

S

tail

node

head

spcl.inf.ethz.ch

@spcl_eth

public void enqueue(T item) {
Node node = new Node(item);
while(true) {

Node last = tail.get();
Node next = last.next.get();
if (next == null) {

if (last.next.compareAndSet(null, node)) {
tail.compareAndSet(last, node);
return;

}
}
else

tail.compareAndSet(last, next);
}

}

48

Final solution: enqueue

Create the new node

Read current tail as last and
last.next as next

Try to set last.next from null
to node, if success then try
to set tail

Ensure progress by
advancing tail pointer if
required and retry

Help other threads to make progress !

spcl.inf.ethz.ch

@spcl_eth

public T dequeue() {
while (true) {

Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == last) {

if (next == null) return null;
else tail.compareAndSet(last, next);

}
else {

T value = next.item;
if (head.compareAndSet(first, next))

return value;
}

}
}

49

Final solution: dequeue

Read head as first, tail as last
and first.next as next

Check if queue looks empty
(1) really empty: return
(2) next available: advance

last pointer

If queue is not empty,
memorize value on next
element and try to remove
current sentinel

Retry if removal was
unsuccessful

Help other threads to make progress !

spcl.inf.ethz.ch

@spcl_eth

REUSE AND THE ABA PROBLEM

50

spcl.inf.ethz.ch

@spcl_eth

public class ConcurrentStack {

AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { … }

public Long pop() { … }

}

51

For the sake of simplicity: back to the Stack 

item
next

item
next

item
next

NULL

top

spcl.inf.ethz.ch

@spcl_eth

public Long pop() {

Node head, next;

do {

head = top.get();

if (head == null) return null;

next = head.next;

} while (!top.compareAndSet(head, next));

return head.item;

}

52

pop

A

B

C

NULL

top

head

next

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {

Node newi = new Node(item);

Node head;

do {

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

53

push

A

B

C

NULL

top

head

newi

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

Assume we do not want to allocate for each push and maintain a Node-pool
instead. Does this work?

54

Node Reuse

public class NodePool {

AtomicReference<Node> top new AtomicReference<Node>();

public void put(Node n) { … }

public Node get() { … }

}

public class ConcurrentStackP {
AtomicReference<Node> top = newAtomicReference<Node>();
NodePool pool = new NodePool();
...

}

spcl.inf.ethz.ch

@spcl_eth

public Node get(Long item) {
Node head, next;
do {

head = top.get();
if (head == null) return new Node(item);
next = head.next;

} while (!top.compareAndSet(head, next));
head.item = item;
return head;

}

public void put(Node n) {
Node head;
do {

head = top.get();
n.next = head;

} while (!top.compareAndSet(head, n));
}

55

NodePool put and get

Only difference to Stack
above: NodePool is in-place.

A node can be placed in one
and only one in-place data
structure. This is ok for a
global pool.

So far this works.

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {

head = top.get();
new.next = head;

} while (!top.compareAndSet(head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get();
if (head == null) return null;
next = head.next;

} while (!top.compareAndSet(head, next));
Long item = head.item;
pool.put(head);
return item;

}

56

Using the node pool

spcl.inf.ethz.ch

@spcl_eth

 run n consumer and producer threads

 each consumer / producer pushes / pops 10,000 elements and records sum of values

 if a pop returns an "empty" value, retry

 do this 10 times with / without node pool

 measure wall clock time (ms)

 check that sum of pushed values == sum of popped values

57

Experiment

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack without reuse

n = 1, elapsed= 15, normalized= 15

n = 2, elapsed= 110, normalized= 55

n = 4, elapsed= 249, normalized= 62

n = 8, elapsed= 843, normalized= 105

n = 16, elapsed= 1653, normalized= 103

n = 32, elapsed= 3978, normalized= 124

n = 64, elapsed= 9953, normalized= 155

n = 128, elapsed= 24991, normalized= 195

nonblocking stack with reuse

n = 1, elapsed= 47, normalized= 47

n = 2, elapsed= 109, normalized= 54

n = 4, elapsed= 312, normalized= 78

n = 8, elapsed= 577, normalized= 72

n = 16, elapsed= 1747, normalized= 109

n = 32, elapsed= 2917, normalized= 91

n = 64, elapsed= 6599, normalized= 103

n = 128, elapsed= 12090, normalized= 94

58

Result (of one particular run)

yieppieh...

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack with reuse

n = 1, elapsed= 62, normalized= 62

n = 2, elapsed= 78, normalized= 39

n = 4, elapsed= 250, normalized= 62

n = 8, elapsed= 515, normalized= 64

n = 16, elapsed= 1280, normalized= 80

n = 32, elapsed= 2629, normalized= 82

Exception in thread "main"
java.lang.RuntimeException:
sums of pushes and pops don't match

at stack.Measurement.main(Measurement.java:107)

nonblocking stack with reuse

n = 1, elapsed= 48, normalized= 48

n = 2, elapsed= 94, normalized= 47

n = 4, elapsed= 265, normalized= 66

n = 8, elapsed= 530, normalized= 66

n = 16, elapsed= 1248, normalized= 78

[and does not return]

59

But other runs ...

why?

spcl.inf.ethz.ch

@spcl_eth

60

ABA Problem

A

NULL

top

head

next

Thread X
in the middle
of pop: after read
but before CAS

Thread Y
pops A

A

NULL

top

Thread Z
pushes B

B

NULL

top

Thread Z'
pushes A

B

NULL

Thread X
completes pop

A

NULL

top

head

next

BA

time

Pool

Pool

top

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {

head = top.get();
new.next = head;

} while (!top.compareAndSet(head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get();
if (head == null) return null;
next = head.next;

} while (!top.compareAndSet(head, next));
Long item = head.item; pool.put(head); return item;

}

spcl.inf.ethz.ch

@spcl_eth

"The ABA problem ... occurs when one activity fails to recognize that a single
memory location was modified temporarily by another activity and therefore
erroneously assumes that the overall state has not been changed."

61

The ABA-Problem

A

X observes
Variable V as A

B

meanwhile V
changes to B ...

A

.. and back to A

A

X observes A again
and assumes the
state is unchanged

time

spcl.inf.ethz.ch

@spcl_eth

DCAS (double compare and swap)
not available on most platforms (we have used a variant for the lock-free list set)

Garbage Collection
relies on the existence of a GC

much too slow to use in the inner loop of a runtime kernel

can you implement a lock-free garbage collector relying on garbage collection?

Pointer Tagging
does not cure the problem, rather delay it

can be practical

Hazard Pointers

Transactional memory (later)

62

How to solve the ABA problem?

spcl.inf.ethz.ch

@spcl_eth

ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32  5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x – (x mod 32)

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

63

Pointer Tagging

MSB 00000XXXXXXXX...

spcl.inf.ethz.ch

@spcl_eth

The ABA problem stems from reuse of a pointer P that has been read by some
thread X but not yet written with CAS by the same thread. Modification takes
place meanwhile by some other thread Y.

Idea to solve:

 before X reads P, it marks it hazarduous by entering it in one of the n (n=
number threads) slots of an array associated with the data structure (e.g.,
the stack)

 When finished (after the CAS), process X removes P from the array

 Before a process Y tries to reuse P, it checks all entries of the hazard array

64

Hazard Pointers

spcl.inf.ethz.ch

@spcl_eth

public class NonBlockingStackPooledHazardGlobal extends Stack {

AtomicReference<Node> top = new AtomicReference<Node>();

NodePoolHazard pool;

AtomicReferenceArray<Node> hazarduous;

public NonBlockingStackPooledHazardGlobal(int nThreads) {

hazarduous = new AtomicReferenceArray<Node>(nThreads);

pool = new NodePoolHazard(nThreads);

}

}

65

Hazard Pointers

null null null null null null null null null null null null

0 nThreads-1

spcl.inf.ethz.ch

@spcl_eth

boolean isHazarduous(Node node) {

for (int i = 0; i < hazarduous.length(); ++i)

if (hazarduous.get(i) == node)

return true;

return false;

}

void setHazardous(Node node) {

hazarduous.set(id, node); // id is current thread id

}

66

Hazard Pointers null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

public int pop(int id) {
Node head, next = null;
do {

do {
head = top.get();
setHazarduous(head);

} while (head == null || top.get() != head);
next = head.next;

} while (!top.compareAndSet(head, next));
setHazarduous(null);
int item = head.item;
if (!isHazardous(head))

pool.put(id, head);
return item;

}

67

Hazard Pointers

public void push(int id, Long item) {

Node head;

Node newi = pool.get(id, item);

do{

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

This ensures that no other thread
is already past the CAS and has
not seen our hazard pointer

null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

The ABA problem also occurs on the node pool.
Two solutions:

Thread-local node pools
 No protection necessary

 Does not help when push/pop operations are not well balanced

Hazard pointers on the global node pool
 Expensive operation for node reuse

 Equivalent to code above: node pool returns a node only when it is not
hazarduous

68

How to protect the Node Pool?

spcl.inf.ethz.ch

@spcl_eth

The Java code above does not really improve performance in comparison to
memory allocation plus garbage collection.

But it demonstrates how to solve the ABA problem principally.

The hazard pointers are placed in thread-local storage.

When thread-local storage can be replaced by processor-local storage, it scales
better*.

69

Remarks

e.g., in *Florian Negele, Combining Lock-Free Programming with Cooperative Multitasking
for a Portable Multiprocessor Runtime System, PhD Thesis, ETH Zürich 2014

spcl.inf.ethz.ch

@spcl_eth

Lock-free programming: new kind of problems in comparison to lock-based
programming:

 Atomic update of several pointers / values impossible, leading to new kind of
problems and solutions, such as threads that help each other in order to
guarantee global progress

 ABA problem (which disappears with a garbage collector)

70

Lessons Learned

