ETH:-zurich i) o e DINFK

Emergent;Tech; x;Artficialintelligence An in-depth look at Google’s first Tensor Processing Unit (TPU)
T H Meet TPU 3.0: Google teases world
ORSTEN HOEFLER :
with latest math coprocessor for Al By Kaz Sato, Staff Developer Advocate, Google Cloud; Cliff Young, Software Engineer, Google Brain; and David Patterson, Distinguished

Look but don't touch... nor look too closely, either Engineer, Google Brain

ParaIIeI Programming

By lain Thomson in San Francisco 9 May 2018 at 00:03 6] SHAREY There's a common thread that connects Google services such as Google Search, Street View, Google Photos and Google Translate: they all use
Google's Tensor Processing Unit, or TPU, to accelerate their neural network computations behind the scenes.

The pod to birth your Al dreams ... Liquid-cooled TPU 3.0s

Parallel Processing on the Matrix Multiplier Unit
Google 10 The latest iteration of Google’s custom-designed number-
crunching chip, version three of its Tensor Processing Unit (TPU), will
dramatically cut the time needed to train machine learning systems, the
Chocolate Factory has claimed.

e
i3
i)

LB =
-— = “\\J — scalar operations. One effective and well-known way to improve the performance of such large matrix operations is through vector processing,

Typical RISC processors provide instructions for simple calculations such as multiplying or adding numbers. These are so-called scalar
processors, as they process a single operation (= scalar operation) with each instruction.

Even though CPUs run at clock speeds in the gigahertz range, it can still take a long time to execute large matrix operations via a sequence of

]
—

"Each of these pods is now eight times more powerful than last year's where the same operation is performed concurrently across a large number of data elements at the same time. CPUs incorporate instruction

@ version -- well over 100 petaflops,” he said. For context, a box
containing 16 of Nvidia's latest GPUs offers two petaflops of computing |

set extensions such as SSE and AVX that express such vector operations. The streaming multiprocessors (SMs) of GPUs are effectively vector

processors, with many such SMs on a single GPU die. Machines with vector processing support can process hundreds to thousands of

operations in a single clock cycle.

:(1 X”)(12 XH
X X, X, K 23
X3)(31)(32)(33
scalar vector matrix

In the case of the TPU, Google designed its MXU as a matrix processor that processes hundreds of thousands of operations (= matrix

operation) in a single clock cycle. Think of it like printing documents one character at a time, one line at a time and a page at a time.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Last week

" Lock tricks on the list-based set example
" Fine-grained locking
= Optimistic locking
" Lazy (removal) locking

= Skip lists

= Example for probabilistic parallel performance — conflict reduction

" Lock-free programming
= Reminder of atomics (CAS)
= Non-blocking counter

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Learning goals today

= Lock-free
= Stack
m |jst

= Unbounded Queues
= More complex example for lock-free, how to design a datastructure

= Memory Reuse and the ABA Problem
= Understand one of the most complex pitfalls in shared memory parallel programming

Literature:
Herlihy: Chapter 10

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Non-blocking counter

Deadlock/Starvation?

public class CasCounter {
private AtomicInteger value;

public int getVal() {
return value.get();

}

// increment and return new value

pub;lic int inc() { What happens if
int v;

do { some processes see
?
v = value.get(); the same value:

} while (!value.compareAndSet(v, v+1));
return v+1;

Assume one thread dies.
Does this affect other threads?

Mechanism

(a) read current value v
(b) modify value V'

(c) try to set with CAS

(d) return if success
restart at (a) otherwise

Positive result of CAS of (c) suggests
that no other thread has written
between (a) and (c)

Why not “guarantees”?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Handle CAS with care

Positive result of CAS suggests that no other thread has written

It is not always true, as we will find out (- ABA problem).

However, it is still THE mechanism to check for exclusive access in lock-free programming.

Sidenotes:
= maybe transactional memory will become competitive at some point
= LL/SC or variants thereof may give stronger semantics avoiding ABA

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Lock-Free Stack

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Stack Node

public static class Node {
public final Long item;

item

public Node next; next

public Node(Long item) { nj;

this.item = item; next

) |

public Node(Long item, Node n) { iEQ

this.item = item; l
next = n;

) NULL

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Blocking Stack

public class BlockingStack {
Node top = null;

top —> ::)r::
synchronized public void push(Long item) { ‘l
top = new Node(item, top); :

Item

} next
synchronized public Long pop() { ‘l'
if (top == null) ::;:

return null;

Long item = top.item; ‘l'
top = top.next; NULL

return item;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Non-blocking Stack

public class ConcurrentStack {
AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { .. } it
. Item
public Long pop() { .. } top =2 | et

item
next

item
next

NULL

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Pop

public Long pop() { head
Node head, next;

do { top
head = top.get();
if (head == null) return null; next

next = head.next;
} while (!top.compareAndSet(head, next));

return head.item;

C€E— O €&— W «— >

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Push
public void push(Long item) { newi
Node newi = new Node(item);
Node head;
top
do {
head = top.get(); head

newi.next = head;
} while (!top.compareAndSet(head, newi));

=

C€E— O €— W €&— > <—

What's the benefit?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Lock-free programs are deadlock-free by design.

How about
performance?

n threads
100,000 push/pop operations
10 times

time
(ms)

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

lock-free

locked/
blocking

20 40 60 80 100 120 140

H#Hthreads

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Performance

A lock-free algorithm does not automatically provide better performance
than its blocking equivalent!
Atomic operations are expensive and contention can still be a problem.

— Backoff, again.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

With backoff

50000
lock-free
45000
40000
35000
30000
. locked/
time 5000 blocking
(ms)
20000
15000
10000
o0 - lock-free
I .
O —=0=s with backoff
0 20 40 60 80 100 120 140 @

H#threads

14

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

LOCK FREE LIST SET

(NOT SKIP LIST!)

Some of the material from "Herlihy: Art of
Multiprocessor Programming"

15

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Does this work?

A: remove(c) B: CAS(b.next,c,b')

B: add(b') K- -\

A: CAS(b.next,c,d)

ok? CAS decides who wins = this seems to work

So does this CAS approach
work generally??

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Another scenario

A: remove(c)
B: remove(b)

- -

. : | / \

CAS CAS

¢ not deleted! ®

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Mark bit approach?
B: c.mark ?

A: remove(c) B: CAS(c.next,d,c')

B: add(c')
. | ‘ | Q

A: CAS(c.mark,false,true)
A: CAS(b.next,c,d)

- -

¢' not added! ®

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The problem

The difficulty that arises in this and many other problems is:
"= We cannot (or don't want to) use synchronization via locks

= We still want to atomically establish consistency of two things
Here: mark bit & next-pointer

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The Java solution

Java.util.concurrent.atomic
AtomicMarkableReference<V> {
boolean attemptMark(V expectedReference, boolean newMark) DCASonV

boolean compareAndSet(V expectedReference, V newReference, and mark
boolean expectedMark, boolean newMark)

V get(boolean[] markHolder)

V getReference()

boolean isMarked()

set(V newReference, boolean newMark)

} reference mark bit

264Bytes=562,949,953,421,312 Petabytes

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The algorithm using AtomicMarkableReference

= Atomically
= Swing reference and
= Update flag
= Remove in two steps
= Set mark bit in next field
= Redirect predecessor’s pointer

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Algorithm idea
Why “try to”? How can 1. try to set mark (c.next)

A: remove(c) it fail? What then? 2. try CAS(
[b.next.reference, b.next.marked],

[c,unmarked], [d,unmarked]);

@Mark

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

It helps!

1. try to set mark (c.next)
A: remove(c) 2. try CAS(
B: r'emove(b) [b.next.reference, b.next.marked],
) [c,unmarked], [d,unmarked]);

OMark MMark

1. try to set mark (b.next)

2. try CAS(
[a.next.reference, a.next.marked],
[b,unmarked], [c,unmarked]);

c remains marked ® (logically deleted)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Traversing the list

Q: what do you do when you find a “logically” deleted node in your path?
A: finish the job.

CAS the predecessor’s next field
Proceed (repeat as needed)

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Find

public Window find(Node head, int key) {

node

class Window {

Node pred = null, curr = null, succ = null; public Node pred;

boolean[] marked = {false}; boolean snip;
while (true) {

loop over nodes until

}ro}

pred = head;
curr = pred.next.getReference();
boolean done = false; }
while (!done) { }
marked = curr.next.get(marked);
succ = marked[1:n]; // pseudo-code to get next ptr
while (marked[@] && !done) { // marked[@] is marked bit

) if pred.next.compareAndSet(curr, succ, false, false) {

S curr = succ;

2 succ = curr.next.get(marked);

s 1}

= else done = true;

S } if marked nodes are found,

if (!done && curr.key >= key)
return new Window(pred, curr);

pred = curr;

curr = succ;

delete them, if deletion fails
restart from the beginning

this.pred
this.curr

public Node curr;
Window(Node pred, Node curr) {

pred;
curr;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Remove

Find element and prev
public boolean remove(T item) { element from key

Boolean snip;
while (true) { If no such element -> return
Window window = find(head, key); false
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

Otherwise try to logically
return false;

delete (set mark bit).

} else {
Node succ = curr.next.getReference(); If no success, restart from the
snip = curr.next.attemptMark(succ, true); very beginning
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false); Try to physically delete the
return true; element, ignore result (2)

v
v

-—--—

v
v

Z

-

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Add
public boolean add(T item) { Find element and prev
boolean splice; element from key

while (true) {
Window window = find(head, key); If element already exists,
Node pred = window.pred, curr = window.curr; P R e
if (curr.key == key) {

return false; ,
? Otherwise create new node,

} else { . ' set next / mark bit of the
Node node = new Node(item); element to be inserted

node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, false))

return true; - i i
? and try to insert. If insertion

¥ fails (next set by other thread
} or mark bit set), retry

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Observations

= We used a special variant of DCAS (double compare and swap) in order to be
able check two conditions at once.

This DCAS was possible because one bit was free in the reference.

= We used a lazy operation in order to deal with a consistency problem. Any
thread is able to repair the inconsistency.
If other threads would have had to wait for one thread to cleanup the
inconsistency, the approach would not have been lock-free!

" This «helping» is a recurring theme, especially in wait-free algorithms where,
in order to make progress, threads must help others (that may be off in the
mountains ©)

spcl.inf.ethz.ch oo o
@spcl_eth E'HZUI’ICh

LOCK FREE UNBOUNDED QUEUE

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Motivation: a Lock-Free Operating System Kernel

At the heart of an Operating System is a scheduler.

A scheduler basically moves tasks between queues (or similar data structures)
and selects threads to run on a processor core.

Scheduling decisions
usually happen when

threads are created C / hd Core

threads end Processor

. Core
threads block / wait ready
t

nreads unblock
Processor
un
Core

— Processor

run

-

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Motivation: a Lock-Free Operating System Kernel

Data structures of a runtime or kernel need to be protected against concurrent
access by
= threads and

Processor

= interrupt service routines run

Core
on different cores.
Conventionally, (spin-)locks A Pmcecszz
are employed for protection
The granularity varies. . Processor

Core

spcl.inf.ethz.ch
YW @spcl_eth

ETH:zurich

Motivation: a Lock-Free Operating System Kernel

If we want to protect scheduling queues in a lock-free way, we obviously need

an implementation of a lock-free unbo

unded queue

We will again meet the problem of transient inconsistencies

If we want to use the queues in a scheduler, usually we cannot rely on

Garbage Collection, we need to reuse elements of the queue
This will lead to a difficult problem, the ABA problem

Big Kernel Lock

Der Big Kernel Lock, kurz BKL, war ein Verfahren, das mit Linux 2.0 im Jahr 1996 eingeflihrt wurde, um die Ausfihrung
zu verwalten. Der BKL verhinderte, dass mehrere Kerel-(Sub)-Prozesse gleichzeitig (evil. auf mehreren Prozessoren bzy
konkurrierenden Zugriffen auf Ressourcen wie System-Dateien auf der Festplatte. Im Grunde war der BKL also ein Spinlog

die Festplatte zugreift.

Problematik [Bearbeiten | Quelltext bearbeiten]

Die Problematik des BKL war vor allem die duferst mangelhafte Skalierbarkeit — bei Kernel 2.0 und einem System mit schol;,,

auf noch mehr Prozessoren ist problematisch. Wenn der BKL fur die unterschiedlichsten Daten und Code genutzt wurde, Ko
den BKL nutzten, nicht auf ihre (zusammen mit ganz anderen Elementen gesperrten) Daten- oder Codebereiche zugreifen.

Killing the Big Kernel Lock

Arnd Bergmann <arnd@arndb.de=>

Frederic Weisbecker <fweisbec@gmail.com>
[GIT, RFC] Killing the Big Kernel Lock
Wed, 24 Mar 2010 22:40:54 +0100

From:
To:
Subject:
Date:

Message- <201003242240.54907.arnd@arndb.de>

ID:

Ce: linux-kernel@vger.kernel.org, Matthew Wilcox <matthew@wil.cx>, Thomas Gleixner <tglx@linutronix.de>, jblunck@suse.de, Alan Cox
<alan@linux.intel.com=, Ingo Molnar <mingo@elte.hu=

Archive- Article

link:

I've spent some time continuing the work of the people on Cc and many oth

from Linux and I now have bkl-remova 1 branch
rnel.org/pub/scm/linux/kernel/git/arnd/playground.git
with the only users of the BKL

ove the big kernel lock
git.ke
kernel on m
dr

to rem
my git tree at git://
that lets me run a
being mostly obscure device

y quad-core machine
iver modules.

old and is Willy's patch
of patches from Jan that

is roughly eight years
and I took a series

The oldest patch in this series
to remove the BKL from fs/locks.c,

Geschichte.

ves it from most of the VFS.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Queue Node

public class Node<T> {

public T value; :EQ
public Node<T> next; l
item

public Node(T item) { next
this.item = item; l
next = null e

} NULL

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Blocking Queue

public class BlockingQueue<T> {

Node<T> head, tail; head__>iterrt1

nex
public synchronized void Enqueue(T item) { it;l:n
} next
public synchronized T Dequeue() { tail —> ::::

} |

} NULL

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Enqueue
public synchronized void Enqueue(T item) {

Node<T> node = new Node<T>(item);
if (tail != null)
tail.next = node;
else
head = node;
tail = node;

case tail != null
node ——> node ——> node —— node ——> node —— node —> new

‘ re

head

case tail = null
new

o/\e

head tail

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Dequeue public synchronized T Dequeue() {

T item = null;
Node<T> node = head;
if (node != null) {
item = node.item;
head = node.next;
if (head == null) tail = null;
}

return item;

case head != tail
node ——> node ——> node ——> node —— node —— node

et :

node

DX X

head tail

case head == tail

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Observation

It turns out that when we want to implement a lock-free queue like this, we
run into problems because of potentially simultaneous updates of

= head

= tail

= tail.next

How to solve this?

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Idea: Sentinel at the front

S —— node —> node — node —— node —— node

1 1

head tail

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Sentinel at the front: Enqueue

nonempty Q S —— node —> node — node —— node —— node — node

J Lz

@

empty Q S —— node .
operations

/\/v read/write tail.next
@

head tail read/write tail

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Sentinel at the front: Dequeue

I @ Read value

n elements S —— node — node —— node —— node —— node
head @ tail

‘ @ Read value

1 element S —— node ,
operations

I/@T * reading head.next

head tail * read/write head

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Does this help?

Still have to update two pointers at a time!
= But enqueuers work on tail and dequeuers on head

Possible inconsistency?
= tail might (transiently) not point to the last element

What's the problem with this?

= Unacceptable that any thread has to wait for the consistency to be established -- this would be
locking camouflaged

Solution
= Threads help making progress

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Queue Node needs Atomic next pointer

public class Node<T> {

public T item; -
public AtomicReference<Node> next; nit
public Node(T item) { item
next = new AtomicReference<Node>(null); next
this.item = item; l

} item
next

public void SetItem(T item) { l

this.item = item; NULL

¥

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Queue

public class NonBlockingQueue extends Queue {

AtomicReference<Node> head = new AtomicReference<Node>(); itemn
AtomicReference<Node> tail = new AtomicReference<Node>(); nT
public NonBlockingQueue() A item
Node node = new Node(null); next
head.set(node); tail.set(node); l

} item
next

public void Enqueue(T item); l

NULL

public T Dequeue();

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Protocol: Initial Version

Enqueuer Dequeuer
= read tailinto last = read headinto first
= then tries to set last.next: = read first.next into next
CAS(last.next, null, new) = jf next is available, read the item value of next
= If unsuccessful retry! = try to set head from first to next
= If successful, try to set tail without retry CAS(head, first, next)
CAS(tail, last, new) = |f unsuccessful, retry!

I @ Read value

node — node

S — node —
ta!n /@' l_—

head @

Protocol

Enqueuer

read tail into last

then tries to set 1ast.next:
CAS(last.next, null, new)

If unsuccessful retry!
If successful, try to set tail without retry

CAS(tail, last, new)

node — node

1

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

How can this be unsuccessful?
1. Some other thread has written last.next just before
me
2. | have read a stale version of tail either
a) because | just missed the update of other
thread
b) because the other thread failed in updating
tail, for example because it has died

If the thread dies before calling this, tail is never
updated.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Protocol

Dequeuer

"= read headinto first

= read first.nextinto next

= jf next is available, read the item value of next

= try to set head from first to next
CAS(head, first, next)

= |f unsuccessful, retry!

How can this be unsuccessful?
1. another thread has already removed next

I @ Read value

S —— node —

L5

head

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

One more possible inconsistency
= Thread A enqueues an element to an empty list, but has not yet adapted tail

head tail

= Thread B dequeues (the sentinel)

S — node

e

head tail
= Now tail points to a dequeued element.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Final solution: enqueue

public void enqueue(T item) { Create the new node
Node node = new Node(item);
while(true) { _
Node last = tail.get(); Read current tail as last and
Node next = last.next.get(); last.next as next
if (next == null) {

if (last.next.compareAndSet(null, node)) { Try to set last.next from null
. . to node, if success then try
tail.compareAndSet(last, node); :
to set tail
return;
}
} Ensure progress by
else advancing tail pointer if

tail.compareAndSet(last, next); TGRS 2N P2

} Help other threads to make progress !

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Final solution: dequeue

. Read head as first, tail as last
lic T ’
pub 1.c dequeue() { and first.next as next
while (true) {
Node first = head.get(); Check if queue looks empty
Node last = tail.get(); (1) really empty: return
Node next = first.next.get(); R
if (first == last) { last pointer
if (next == null) return null;

If queue is not empty,

else tail.compareAndSet(last, next); memorize value on next
} | element and try to remove
else { Help other threads to make progress ! AT Qi

T value = next.item;
if (head.compareAndSet(first, next))

Retry if removal was
return value;

unsuccessful

spcl.inf.ethz.ch oo o
@spcl_eth E'HZUI’ICh

REUSE AND THE ABA PROBLEM

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

For the sake of simplicity: back to the Stack ©

3 item
top next
public class ConcurrentStack { l
AtomicReference<Node> top = new AtomicReference<Node>(); item
next

public void push(Long item) { .. } l
item

public Long pop() { .. }

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

pop

Memorize "current

ublic Lon o stack state" in local
P &P p() { variable head head

Node head, next;
top

do {
head = top.get(); next
if (head == null) return null;
next = head.next;

} while (!top.compareAndSet(head, next));

. Action is taken only
return head.item; if "the stack state"

} did not change

C€— O €— W €«<— >

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

push
public void push(Long item) { newi
Node newi = new Node(item); l
Node head; _
Memorize "current top A
stack state" in local
do { variable head head l
head = top.get(); B
newi.next = head; l
} while (!top.compareAndSet(head, newi)); C
} }
NULL

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Node Reuse

Assume we do not want to allocate for each push and maintain a Node-pool
instead. Does this work?

public class NodePool {
AtomicReference<Node> top new AtomicReference<Node>();

public void put(Node n) { .. }
public Node get() { .. }

public class ConcurrentStackP {
AtomicReference<Node> top = newAtomicReference<Node>();
NodePool pool = new NodePool();

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

NodePool put and get

public Node get(Long item) {

Node head, next; Only difference to Stack
o o above: NodePool is in-place.
head = top.get();
if (head == null) return new Node(item);
next = head.next; .
} while (!top.compareAndSet(head, next)); A node can be placed Inone
head.item = item; and onIy one m-place data
t head; . .
yo structure. This is ok for a
global pool.
public void put(Node n) {
Node head;
do { So far this works.

head = top.get();
n.next = head;
} while (!top.compareAndSet(head, n));

¥

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Using the node pool

public void push(Long item) ({
Node head;
Node new = pool.get(item);
do {
head = top.get();
new.next = head;
} while (!top.compareAndSet(head, new));

}

public Long pop() {
Node head, next;
do {
head = top.get();
if (head == null) return null;
next = head.next;
} while (!top.compareAndSet(head, next));
Long item = head.item;
pool.put(head);
return item;

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Experiment

= run n consumer and producer threads

= each consumer / producer pushes / pops 10,000 elements and records sum of values
= if a pop returns an "empty" value, retry

= do this 10 times with / without node pool

= measure wall clock time (ms)

= check that sum of pushed values == sum of popped values

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Result (of one particular run)

nonblocking stack without reuse

n =1, elapsed= 15, normalized= 15

n =2, elapsed= 110, normalized= 55

n =4, elapsed= 249, normalized= 62

n = 8, elapsed= 843, normalized= 105

n =16, elapsed= 1653, normalized= 103

n =32, elapsed= 3978, normalized=124

n = 64, elapsed= 9953, normalized= 155

n = 128, elapsed= 24991, normalized= 195

nonblocking stack with reuse

n =1, elapsed=47, normalized=47

n = 2, elapsed= 109, normalized= 54

n =4, elapsed= 312, normalized=78

n =8, elapsed=577, normalized= 72

n =16, elapsed= 1747, normalized= 109
n =32, elapsed= 2917, normalized=91

n = 64, elapsed= 6599, normalized= 103
n =128, elapsed= 12090, normalized= 94

vieppieh...

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

But other runs....

nonblocking stack with reuse nonblocking stack with reuse

n=1, elapsed= 62, normalized= 62 n =1, elapsed= 48, normalized= 48

n = 2, elapsed= 78, normalized= 39 n = 2, elapsed= 94, normalized= 47

n =4, elapsed= 250, normalized= 62 n =4, elapsed= 265, normalized= 66

n =8, elapsed=515, normalized= 64 n = 8, elapsed= 530, normalized= 66

n =16, elapsed= 1280, normalized= 80 n =16, elapsed= 1248, normalized= 78
n =32, elapsed= 2629, normalized= 82 [and does not return]

Exception in thread "main”
java.lang.RuntimeException:
sums of pushes and pops don't match

at stack.Measurement.main(Measurement.java:107)

' why?

ABA Problem

Thread X

in the middle

of pop: after read
but before CAS

head
top
next =—p
NULL
time

Thread Y
pops A

Thread Z
pushes B

| |

NULL NULL

public Long pop() {
Node head, next;
do {
head = top.get();
if (head == null) return null;
next = head.next;
} while (!top.compareAndSet(head, next));
Long item = head.item; pool.put(head); return item;

spcl.inf.ethz.ch 5o o
w osien ETHZzUrich

Thread Z'
pushes A

Thread X
completes pop

ool BN

top

head -/,'>

Lo\
v J

NULL NULL

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {
head = top.get();
new.next = head;
} while (!top.compareAndSet(head, new));

} 60

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

The ABA-Problem

"The ABA problem ... occurs when one activity fails to recognize that a single
memory location was modified temporarily by another activity and therefore
erroneously assumes that the overall state has not been changed."

X observes meanwhile V ..and back to A X observes A again

Variable V as A changesto B ... and assumes the

state is unchanged

—> A —> B —> A —> A

time

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

How to solve the ABA problem?

DCAS (double compare and swap)

not available on most platforms (we have used a variant for the lock-free list set)

Garbage Collection
relies on the existence of a GC
much too slow to use in the inner loop of a runtime kernel
can you implement a lock-free garbage collector relying on garbage collection?

Pointer Tagging
does not cure the problem, rather delay it
can be practical

Hazard Pointers
Transactional memory (later)

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Pointer Tagging

ABA problem usually occurs with CAS on pointers
Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32 = 5 bits available for tagging

oo

MSB XIX|IX|IX|IX|X]|X]|X]0OjJO0O|JO|O]O

ooo

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x — (x mod 32)

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Hazard Pointers

The ABA problem stems from reuse of a pointer P that has been read by some
thread X but not yet written with CAS by the same thread. Modification takes
place meanwhile by some other thread Y.

|dea to solve:

= before X reads P, it marks it hazarduous by entering it in one of the n (n=
number threads) slots of an array associated with the data structure (e.g.,
the stack)

* When finished (after the CAS), process X removes P from the array
= Before a process Y tries to reuse P, it checks all entries of the hazard array

spcl.inf.ethz.ch 0o o
v enien ETHZUrich

Hazard Pointers

public class NonBlockingStackPooledHazardGlobal extends Stack {
AtomicReference<Node> top = new AtomicReference<Node>();
NodePoolHazard pool,;
AtomicReferenceArray<Node> hazarduous;

public NonBlockingStackPooledHazardGlobal(int nThreads) {
hazarduous = new AtomicReferenceArray<Node>(nThreads);
pool = new NodePoolHazard(nThreads);

null | null | null | null | null | null | null | null | null | null | null | null

0 nThreads-1

spcl.inf.ethz.ch
YW @spcl_eth

ETH:zurich

Hazard Pointers

boolean isHazarduous(Node node) {
for (inti=0; i < hazarduous.length(); ++i)
if (hazarduous.get(i) == node)
return true;
return false;

void setHazardous(Node node) {
hazarduous.set(id, node); // id is current thread id

null

null

null

null

null

null

y null

null

null

nThreads-1

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Hazard Pointers null | null § null | null | null | hd | null y null X null | null

0 id nThreads-1

public int pop(int id) {

Node head, next = null; public void push(int id, Long item) {
do { Node head;
do { Node newi = pool.get(id, item);
head = top.get(); do{

setHazarduous(head);
} while (head == null | | top.get() != head);
next = head.next;
} while (top.compareAndSet(head, next));
setHazarduous(null); i
int item = head.item;

if (lisHazardous(head
(pool.put(id,(head;,? This ensures that no other thread

return item: is already past the CAS and has
} not seen our hazard pointer

head = top.get();
newi.next = head;
} while (!top.compareAndSet(head, newi));

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

How to protect the Node Pool?

The ABA problem also occurs on the node pool.
Two solutions:
Thread-local node pools

= No protection necessary
= Does not help when push/pop operations are not well balanced

Hazard pointers on the global node pool
= Expensive operation for node reuse
= Equivalent to code above: node pool returns a node only when it is not
hazarduous

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Remarks

The Java code above does not really improve performance in comparison to
memory allocation plus garbage collection.

But it demonstrates how to solve the ABA problem principally.

The hazard pointers are placed in thread-local storage.

When thread-local storage can be replaced by processor-local storage, it scales
better*.

e.g., in *Florian Negele, Combining Lock-Free Programming with Cooperative Multitasking
for a Portable Multiprocessor Runtime System, PhD Thesis, ETH Zurich 2014

spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Lessons Learned

Lock-free programming: new kind of problems in comparison to lock-based
programming:
= Atomic update of several pointers / values impossible, leading to new kind of

problems and solutions, such as threads that help each other in order to
guarantee global progress

= ABA problem (which disappears with a garbage collector)

