
spcl.inf.ethz.ch

@spcl_eth

TORSTENHOEFLER

Parallel Programming

The ABA problem, a bit of
Concurrency Theory:
Linearizability, Sequential
Consistency, Consensus

spcl.inf.ethz.ch

@spcl_eth

ÁRepeat: CAS and atomics
ÁBasis for lock-free and wait-free algorithms

ÁLock-free
ÁStack - single update of head - simpler

ÁList - manage multiple pointers, importance of mark bits again

ÁUnbounded Queues
ÁMore complex example for lock-free, how to design a more realistic datastructure

Last week

2

spcl.inf.ethz.ch

@spcl_eth

ÁMemory Reuse and the ABA Problem
ÁUnderstand one of the most complex pitfalls in shared memory parallel programming

ÁVarious solutions

ÁTheoretical background (finally!)
ÁLinearizability

ÁConsistency

ÁHistories

ÁComposability

Learning goals today

3

Literature:
Herlihy: Chapter 10

spcl.inf.ethz.ch

@spcl_eth

REUSE AND THE ABA PROBLEM

4

spcl.inf.ethz.ch

@spcl_eth

public class ConcurrentStack {

AtomicReference <Node> top = new AtomicReference <Node>();

public void push(Long item) { ƛ ǆ

public Long pop() ǅ ƛ ǆ

}

5

For the sake of simplicity: back to the stackJ

item
next

item
next

item
next

NULL

top

spcl.inf.ethz.ch

@spcl_eth

public Long pop() {

Node head, next;

do {

head = top. get ();

if (head == null) return null;

next = head.next ;

} while (! top.compareAndSet (head, next));

return head.item ;

}

6

pop

A

B

C

NULL

top

head

next

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {

Node newi = new Node(item);

Node head;

do {

head = top. get ();

newi.next = head;

} while (! top.compareAndSet (head, newi));

}

7

push

A

B

C

NULL

top

head

newi

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

Assume we do not want to allocate for each push and maintain a nodepool
instead. Does this work?

8

Nodereuse

public class NodePool {

AtomicReference <Node> top new AtomicReference <Node>() ;

public void put ƽ.ÏÄÅ Îƾ ǅ ƛ ǆ

public Node get ƽƾ ǅ ƛ ǆ

}

public class ConcurrentStackP {
AtomicReference <Node> top = newAtomicReference <Node>();
NodePool pool = new NodePool();
...

}

spcl.inf.ethz.ch

@spcl_eth

public Node get (Long item) {
Node head, next;
do {

head = top. get ();
if (head == null) return new Node(item);
next = head.next ;

} while (! top.compareAndSet (head, next));
head.item = item;
return head;

}

public void put (Node n) {
Node head;
do {

head = top. get ();
n.next = head;

} while (! top.compareAndSet (head, n));
}

9

NodePoolput and get

Only difference to Stack
above: NodePool is in-place.

A node can be placed in one
and only one in-place data
structure. This is ok for a
global pool.

So far this works.

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {
Node head;
Node new = pool.get (item);
do {

head = top. get ();
new.next = head;

} while (! top.compareAndSet (head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get ();
if (head == null) return null;
next = head.next ;

} while (! top.compareAndSet (head, next));
Long item = head.item ;
pool.put (head);
return item;

}

10

Using the node pool

spcl.inf.ethz.ch

@spcl_eth

Á run n consumer and producer threads

Á each consumer / producer pushes / pops 10,000 elements and records sum of values

Á if a pop returnsan "empty" value, retry

Á do this 10 times with / without node pool

Ámeasure wall clock time (ms)

Á check that sum of pushed values == sum of popped values

11

Experiment

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack without reuse

n = 1, elapsed= 15, normalized= 15

n = 2, elapsed= 110, normalized= 55

n = 4, elapsed= 249, normalized= 62

n = 8, elapsed= 843, normalized= 105

n = 16, elapsed= 1653, normalized= 103

n = 32, elapsed= 3978, normalized= 124

n = 64, elapsed= 9953, normalized= 155

n = 128, elapsed= 24991, normalized= 195

nonblocking stack with reuse

n = 1, elapsed= 47, normalized= 47

n = 2, elapsed= 109, normalized= 54

n = 4, elapsed= 312, normalized= 78

n = 8, elapsed= 577, normalized= 72

n = 16, elapsed= 1747, normalized= 109

n = 32, elapsed= 2917, normalized= 91

n = 64, elapsed= 6599, normalized= 103

n = 128, elapsed= 12090, normalized= 94

12

Result (of one particular run)

yieppieh...

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack with reuse

n = 1, elapsed= 62, normalized= 62

n = 2, elapsed= 78, normalized= 39

n = 4, elapsed= 250, normalized= 62

n = 8, elapsed= 515, normalized= 64

n = 16, elapsed= 1280, normalized= 80

n = 32, elapsed= 2629, normalized= 82

Exception in thread "main"
java.lang.RuntimeException:
sums of pushes and pops don't match

at stack.Measurement.main(Measurement.java:107)

nonblocking stack with reuse

n = 1, elapsed= 48, normalized= 48

n = 2, elapsed= 94, normalized= 47

n = 4, elapsed= 265, normalized= 66

n = 8, elapsed= 530, normalized= 66

n = 16, elapsed= 1248, normalized= 78

[and does not return]

13

But other runs ...

why?

spcl.inf.ethz.ch

@spcl_eth

14

ABA Problem

A

NULL

top

head

next

Thread X
in the middle
of pop: after read
but before CAS

Thread Y
pops A

A

NULL

top

Thread Z
pushes B

B

NULL

top

Thread Z'
pushes A

B

NULL

Thread X
completes pop

A

NULL

top

head

next

BA

time

Pool

Pool

top

public void push(Long item) {
Node head;
Node new = pool.get (item);
do {

head = top. get ();
new.next = head;

} while (! top.compareAndSet (head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get ();
if (head == null) return null;
next = head.next ;

} while (! top.compareAndSet (head, next));
Long item = head.item ; pool.put (head); return item;

}

spcl.inf.ethz.ch

@spcl_eth

"The ABA problem ... occurs when one activity fails to recognize that a single
memory location was modified temporarily by another activity and therefore
erroneously assumes that the overall state has not been changed."

15

The ABA-Problem

A

X observes
Variable V as A

B

meanwhile V
changes to B ...

A

.. and back to A

A

X observes A again
and assumes the
state is unchanged

time

spcl.inf.ethz.ch

@spcl_eth

DCAS (double compare and swap)
not available on most platforms (we have used a variant for the lock-free list set)

Garbage Collection
relies on the existence of a GC

much too slow to use in the inner loop of a runtime kernel

can you implement a lock-free garbage collector relying on garbage collection?

Pointer Tagging
doesnot curethe problem, ratherdelayit

canbepractical

Hazard Pointers

Transactional memory (later)

16

How to solve the ABA problem?

spcl.inf.ethz.ch

@spcl_eth

ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32 Ą 5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x ς(x mod32)

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

17

Pointer Tagging

MSB 00000XXXXXXXX...

spcl.inf.ethz.ch

@spcl_eth

The ABA problem stems from reuse of a pointer P that has been read by some
thread X but not yet written with CAS by the same thread. Modificationtakes
placemeanwhileby someother threadY.

Ideato solve:

Ábefore X reads P, it marks it hazarduous by entering it in one of the n (n=
number threads) slots of an array associated with the data structure (e.g.,
the stack)

ÁWhenfinished(after the CAS), process X removesP from the array

ÁBeforea processY tries to reuseP, it checksall entriesof the hazardarray

18

Hazard Pointers

spcl.inf.ethz.ch

@spcl_eth

public class NonBlockingStackPooledHazardGlobalextends Stack {

AtomicReference<Node> top = newAtomicReference<Node>();

NodePoolHazardpool;

AtomicReferenceArray<Node> hazarduous;

public NonBlockingStackPooledHazardGlobal(int nThreads) {

hazarduous= new AtomicReferenceArray<Node>(nThreads);

pool= newNodePoolHazard(nThreads);

}

}

19

HazardPointers

null null null null null null null null null null null null

0 nThreads-1

spcl.inf.ethz.ch

@spcl_eth

boolean isHazarduous(Node node) {

for (int i = 0; i < hazarduous.length(); ++i)

if (hazarduous.get(i) == node)

return true;

return false;

}

void setHazardous(Node node) {

hazarduous.set(id, node); // id is current thread id

}

20

HazardPointers null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

public int pop(int id) {
Nodehead, next = null;
do {

do {
head= top.get();
setHazarduous(head);

} while (head == null || top.get() != head);
next = head.next;

} while (!top.compareAndSet(head, next));
setHazarduous(null);
int item = head.item;
if (!isHazardous(head))

pool.put(id, head);
return item;

}

21

HazardPointers

public void push(int id, Long item) {

Node head;

Node newi = pool.get(id, item);

do{

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

This ensures that no other thread
is already past the CAS and has
not seen our hazard pointer

null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

The ABA problemalso occurson the nodepool.
Twosolutions:

Thread-localnodepools
ÁNoprotectionnecessary

ÁDoesnot helpwhenpush/popoperationsarenot well balanced

Hazardpointerson the global nodepool
ÁExpensive operationfor nodereuse

ÁEquivalentto codeabove: nodepool returnsa nodeonlywhenit isnot
hazarduous

22

Howto protect the NodePool?

spcl.inf.ethz.ch

@spcl_eth

The Java code above does not really improve performance in comparison to
memory allocation plus garbage collection.

But it demonstrateshow to solvethe ABA problemprincipally.

The hazardpointersareplacedin thread-localstorage.

When thread-local storage can be replaced by processor-local storage, it scales
better*.

23

Remarks

* e.g., in Florian Negele, Combining Lock-Free Programming with Cooperative Multitasking
for a Portable Multiprocessor Runtime System, PhD Thesis, ETH Zürich 2014

spcl.inf.ethz.ch

@spcl_eth

Lock-free programming: newkindof problemsin comparisonto lock-based
programming:

ÁAtomicupdate of severalpointers/ valuesimpossible, leadingto newkindof
problemsandsolutions, such asthreadsthat helpeachother in order to
guaranteeglobal progress

ÁABA problem (which disappears with a garbage collector)

24

LessonsLearned

spcl.inf.ethz.ch

@spcl_eth

Å algorithms to implement critical sections and locks

Å hardware support for implementing critical sections and locks

Å how to reason about concurrent algorithms using state diagrams

Å high-level constructs such as semaphores and monitors that raise the level
of abstraction

Å lock-free implementations that require Read-Modify-Write operations

wŜŎŀǇΥ ǿŜ ƘŀǾŜ ǎŜŜƴ Χ

Literature:
Herlihy: Chapter 3.1 - 3.6

25

spcl.inf.ethz.ch

@spcl_eth

developed a clear overview of the theoretical concepts and notions behind
such as

Å consistency

Å linearizability

Å consensus

Å a languageto talk formallyaboutconcurrency
I havebeenveryhand-wavywhenansweringsometrickyquestions

Å now that youappreciatethe complexity
Letusintroducesomenon-trivial formalism to captureit

.ǳǘΥ ǿŜ ƘŀǾŜ ƴƻǘ όȅŜǘύ Χ

26

spcl.inf.ethz.ch

@spcl_eth

class WaitFreeQueue {

volatile int head = 0, tail = 0;

AtomicReferenceArray<T>[] items =

new AtomicReferenceArray<T>(capacity);

public boolean enq(T x) {

if (tail Ƶhead == capacity) return false;

items.set((tail+1) % capacity, x);

tail ++;

return true;

}

public T deq() {

if (tail - head == 0) return null;

int x = items.get((head+1) % capacity);

head++;

return x;

}

}

Example: Single-Enqueuer/Dequeuer bounded FIFO queue

e

a

b

c

d

tail

head % capacity

head

27

Given that there is only one
enqueuer and one
dequeuer process. Is the
implementation of the FIFO
queue from above correct?
Why/why not?

For a concurrent, locking
queue it is easier to argue.
Why/why not?

spcl.inf.ethz.ch

@spcl_eth

An object (e.g., in Java or C++) is a container for data and provides

Å a setof methodsto manipulatedata

An objecthasa well defined

Å state beingmodifiedduringmethodinvocations

Well-establishedasFloyd-Hoare logicto provecorrectness

ÁDefiningthe objects behavior in terms of a set of pre- and postconditions
for each method is inherentlysequential

Can wecarry that forward to a parallel formulation?

Sequential Objects ςSequentialSpecifications(you know this)

28

spcl.inf.ethz.ch

@spcl_eth

A method call is the interval that starts with an invocationand ends with a
response.

A method call is called pendingbetween invocation and response.

Method Calls

Thread

q.enq(7)

invocation response

29

spcl.inf.ethz.ch

@spcl_eth

Sequentialvs. Concurrent

Sequential Concurrent

Meaningfulstateof objectsonly
betweenmethod calls.

Method callscanoverlap. Objectmight
neverbe betweenmethodcalls.
Exception: periodsof quiescence.

Methodsdescribedin isolation. All possibleinteractionswith concurrent
callsmust be takeninto account.

Can addnew methodswithout
affectingoldermethods.

Must takeinto accountthat everything
caninteract with everythingelse.

"Globalclock" "Objectclock"

30

spcl.inf.ethz.ch

@spcl_eth

time

BlockingQueue Behavior

Thread A

q.deq()

lock unlockdeq

Thread B

q.enqόΧύ

lock unlockenq

enq deq

With locking it becomes
simple to argue: things
become sequential. Can
we formalize this?

31

Which thread got the lock first?

spcl.inf.ethz.ch

@spcl_eth

Linearizability

32

ά²Ƙŀǘϥǎ ǘƘŜ ŘƛŦŦŜǊŜƴŎŜ ōŜǘǿŜŜƴ ǘƘŜƻǊȅ ŀƴŘ ǇǊŀŎǘƛŎŜΚ
²ŜƭƭΣ ƛƴ ǘƘŜƻǊȅ ǘƘŜǊŜ ƛǎ ƴƻƴŜΦέ - folklore

spcl.inf.ethz.ch

@spcl_eth

Each method should appearto take effect instantaneouslybetween

invocation and response events.

An object for which this is true for all possible executions is called

linearizable.

The object is correct if the associated sequential behavior is correct.

Linearizability

33

spcl.inf.ethz.ch

@spcl_eth

Is this particular execution linearizable?

A
q.enq(x)

B

q.deq() Ąy

q.deq() Ąx

time

34

q.eny(y)

spcl.inf.ethz.ch

@spcl_eth

Yes

A
q.enq(x)

B

q.eny(y)

q.deq() Ąy

q.deq() Ąx

time

35

spcl.inf.ethz.ch

@spcl_eth

Linearizable?

A
q.enq(x)

B
q.enq(y)

q.deq() Ąy

time

36

spcl.inf.ethz.ch

@spcl_eth

37

No

A
q.enq(x)

B
q.enq(y)

q.deq() Ąy

time

x is first in queue

spcl.inf.ethz.ch

@spcl_eth

38

Linearizable?

A
q.enq(x)

B
q.eny(y)

q.deq() Ąy

q.deq() Ąx

time

spcl.inf.ethz.ch

@spcl_eth

39

Yes

A
q.enq(x)

B
q.eny(y)

q.deq() Ąy

q.deq() Ąx

time

spcl.inf.ethz.ch

@spcl_eth

40

Andyes, anotherscenario.

A
q.enq(x)

B
q.eny(y)

q.deq() Ąy

q.deq() Ąx

time

spcl.inf.ethz.ch

@spcl_eth

41

Read/Write Register Example

A
write(0)

B

time

write(2)

write(1) read()Ą1

spcl.inf.ethz.ch

@spcl_eth

42

Linearizable!

A
write(0)

B

write(1)

time

write(2)

read()Ą1

spcl.inf.ethz.ch

@spcl_eth

43

Linearizable?

A
write(0)

B

time

write(2)read()Ą1

write(1) read()Ą1

spcl.inf.ethz.ch

@spcl_eth

44

No

A
write(0)

B

time

write(2)read()Ą1

write(1) must
havehappened

write(1) read()Ą1

spcl.inf.ethz.ch

@spcl_eth

ÁWe talk about executionsin order to abstract away from actual method
content.
ÁA simplification you need to revert (mentally?) for analyzing codes

ÁThe linearization points can often be specified, but they may depend on the
execution(not only the source code).

ÁExample: if the queue is empty,
a dequeue may fail,
while it does not fail with
a non-empty queue

Remark

public int deq() throws EmptyException {

if (tail == head)

throw new EmptyException();

int x = items.get(head++ % capacity);

return x;

}

45

spcl.inf.ethz.ch

@spcl_eth

Split methodcallsinto two events. Notation:

Invocation Response

A q.enq(x) A q: void

More formal

thread

object method

arguments thread

object

result

46

spcl.inf.ethz.ch

@spcl_eth

History H = sequence of invocations and responses

A q.enq(3)

A q:void

A q.enq(5)

H B p.enq(4)

B p:void

B q.deq()

B q:3

Invocationsandresponsematch, if thread

namesagreeandobjectnamesagree

An invocationispendingif it hasno matching

response.

A subhistoryiscompletewhenit hasno

pendingresponses.

47

History

spcl.inf.ethz.ch

@spcl_eth

Object projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Thread projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Projections

H|q =

H|B =

48

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Completesubhistory

HistoryH without its

pendinginvocations.

Completesubhistories

complete (H) =

49

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

Sequentialhistory:

ÁMethod callsof different threadsdo not
interleave.

ÁA final pendinginvocationisok.

Sequentialhistories

50

spcl.inf.ethz.ch

@spcl_eth

H= A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Well formed histories
Well formed history:

Per threadprojectionssequential

H|A = A q.enq(3)

A q:void

H|B = B p.enq(4)

B p:void

B q.deq()

B q:3

51

spcl.inf.ethz.ch

@spcl_eth

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

G =

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

Equivalenthistories

H andG
equivalent:

H|A = G|A
H|B = G|B

52

spcl.inf.ethz.ch

@spcl_eth

Sequentialspecificationtells if a

single-threaded, singleobject

historyis legal

Example: pre- / postconditions

A sequentialhistoryH is legal, if

Á for everyobjectx

ÁH|x adheresto the sequential

specificationof x

Legal histories

53

spcl.inf.ethz.ch

@spcl_eth

Amethod call precedesanother method

call if the response event precedes the

invocationevent

A q.enq(3)

B p.enq(4)

B p:void

A q:void

B q.deq()

B q:3

if no precedence then method calls

overlap

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Precedence

54

spcl.inf.ethz.ch

@spcl_eth

Given: historyὌandmethod executionsά andά on Ὄ

Definition: □ ╗O□ means □ precedes□

╗O is a relation andimpliesa partial order on H. The order is total when H is
sequential.

Notation

55

spcl.inf.ethz.ch

@spcl_eth

History Ὄis linearizable if it can be extended to a history Ὃ

Áappendingzeroor more responsesto pendinginvocationsthat took effect

Ádiscardingzeroor more pendinginvocationsthat did not take effect

such that G is equivalentto a legal sequentialhistoryὛwith

╖OṒ ╢O

Linearizability

56

spcl.inf.ethz.ch

@spcl_eth

57

Invocationsthat took effectΧ Κ

A
q.enq(x)

B
q.deq() Ąx

C
flag.read() Ą ?

cannot be removed
because B already took
effect into account

canbe removed,
nobodyrelieson this

spcl.inf.ethz.ch

@spcl_eth

╖O ╪ᴼ╬ȟ╫ᴼ╬

╢O ╪ᴼ╫ȟ╪ᴼ╬ȟ╫ᴼ╬

╖OṒ ╢O ? What does this mean?

A
a

B
b

c

time

╖O

╢O ╢O

58

In other words: S respects
the real-time order of G

Linearizability:limitation on
the possible choice of S

spcl.inf.ethz.ch

@spcl_eth

ComposabilityTheorem

History H is linearizable if and only if

for everyobjectx

H|x is linearizable

Consequence:

Modularity

Å Linearizabilityof objectscanbeprovenin
isolation

Å Independentlyimplementedobjectscan
becomposed

Composability

59

spcl.inf.ethz.ch

@spcl_eth

Memory location for values of primitive type (boolean, int, ...)

Å operations read and write

Linearizable with a single linearization point, i.e.

Å sequentially consistent, every read operation yields most recently written
value

Å for non-overlapping operations, the realtime order is respected.

Recall: Atomic Registers

60

spcl.inf.ethz.ch

@spcl_eth

public T deq() throws EmptyException {

lock.lock ();

try {

if (tail == head)

throw new EmptyException ();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock ();

}

}

ReasoningAbout Linearizability(Locking)

head

tail

Linearization points
are when locks are released

61

spcl.inf.ethz.ch

@spcl_eth

class WaitFreeQueue {

volatile int head = 0, tail=0;

AtomicReferenceArray<T>[] items =

new AtomicReferenceArray<T>(capacity);

public boolean enq (T x) {

if (tail Ƶheap == capacity) return false;

items.set((tail+2) % capacity, x);

tail++;

return true;

}

public T deq() {

if (tail - head == 0) return null;

int x = items.get((head+1) % capacity);

head++;

return x;

}

}

Reasoning About Linearizability (Wait-free example)

Linearization point
for (only one)
enqueuer

Linearization point
for (only one)
dequeuer

head

tail

62

Linearization point

Linearization point

spcl.inf.ethz.ch

@spcl_eth

public T dequeue() {
while (true) {

Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == last){

if (next == null) return null;
else tail.compareAndSet(last, next);

}
else {

T value = next.item;
if (head.compareAndSet(first, next))

return value;
}

}
}

Reasoning About Linearizability (Lock-free example)

Linearization point

Linearization point

Linearization point

63

spcl.inf.ethz.ch

@spcl_eth

64

Appendix (for next lecture)

spcl.inf.ethz.ch

@spcl_eth

Theorem: Atomic Registers have consensus number 1.

Proof strategy:

ÁAssume otherwise

ÁReason about the properties of any such protocol

ÁDerive a contradiction

ÁSuffices to prove for binary consensus and n=2

Appendix: Atomic Registers have consensus number 1.

65

spcl.inf.ethz.ch

@spcl_eth

66

Wait-Free Computation

Either A or BάƳƻǾŜǎέ

Moving means
Register read or

Register write

A moves B moves

spcl.inf.ethz.ch

@spcl_eth

67

The Two-Move Tree

Initial stateFinal states

spcl.inf.ethz.ch

@spcl_eth

68

Decision Values

1 0 0 1 1 1

spcl.inf.ethz.ch

@spcl_eth

69

Bivalent: Both Possible

1 1 1

bivalent

1 0 0

spcl.inf.ethz.ch

@spcl_eth

70

Univalent: Single Value Possible

1 1 1

univalent

1 0 0

spcl.inf.ethz.ch

@spcl_eth

71

x-valent: x Only Possible Decision

0 1 1 1

1-valent

01

spcl.inf.ethz.ch

@spcl_eth

Wait-free computation is a tree

Bivalent system states
ÁOutcome not fixed

Univalent states
ÁOutcome is fixed

Áaŀȅ ƴƻǘ ōŜ άƪƴƻǿƴέ ȅŜǘ

1-Valent and 0-Valent states

Summary

72

spcl.inf.ethz.ch

@spcl_eth

Some initial state is bivalent

Outcome depends on
ÁChance

ÁWhim of the scheduler

aǳƭǘƛǇǊƻŎŜǎǎƻǊ ƎƻŘǎ Řƻ Ǉƭŀȅ ŘƛŎŜ Χ

Lets prove this claim

Claim

73

spcl.inf.ethz.ch

@spcl_eth

74

Both Inputs 0

Univalent: all executions must decide 0

00

spcl.inf.ethz.ch

@spcl_eth

75

Both Inputs 0

Including this solo execution by A

0

spcl.inf.ethz.ch

@spcl_eth

76

Both Inputs 1

All executions must decide 1

11

spcl.inf.ethz.ch

@spcl_eth

77

Both Inputs 1

Including this solo execution by B

1

spcl.inf.ethz.ch

@spcl_eth

78

What if inputs differ?

10

By Way of contradiction: If univalent
all executions must decide on same value

spcl.inf.ethz.ch

@spcl_eth

79

The Possible Executions

Include the solo execution by A

that decides 0

0 1

spcl.inf.ethz.ch

@spcl_eth

80

The Possible Executions

Also include the solo execution by B

which we know decides 1

0 1

spcl.inf.ethz.ch

@spcl_eth

81

Possible Executions Include

Solo execution by A must decide 0 Solo execution by B must decide 1

0 1

How univalent is that?
(QED)

