ETHzirich R B A Sz iy INFK

What puts the super in
supercomputer?

TORSTENMOEFLER
Parallel Programming
The ABA problem, a bit of

. Concurrency Theory:
¢ Linearizability, Sequential sl
2 Consistency, Consensus

The secret behind supercomputing? More of everything.

AR SOPTR

The need for speed

Computer performance is measured in FLOPS, which stands for floating-point

\ operations per second. The more FLOPS a computer can process, the more

\ powerful it is.

J IDEL b T ETameeen 0 N U SRR

For example, look to the Intel

i . 3 I Core i9 Extreme Edition
.S\ e've come a long way since MITS developed the first personal computer in :
)) . processor designed for
1974, which was sold as a kit that required the customer to assemble the

= 5

= desktop computers. It has 18
hi Q 9 0/, f Sy Q

machine themselves. Jump ahead to 2018, and around 77% of Americans . .

s ' cores, or processing units that

currently own a smartphone, and nearly half of the global population uses the ;

take in tasks and complete

Jrternek: them based on received
The devices we keep at instructions.
home and in our The power of supercomputers o »
pockets are pretty > l ,=’-
advanced compared to ‘ m’

the technology of the >

This single chip is capable of

one trillion floating point

operations per second (i.e., 1
teraFLOP)—as fast as a

You've come a long way, baby. The first
personal computer, the Altair 8800, was sold in supercomputer from 1998.

1974 as a mail-order kit that users had to assemble You don't need that kind of
themselves.

past, but they can’t hold
a candle to the raw

power of a

performance to check email
supercomputer.

and surf the web, but it’s great

Superpowering science. Faster processing speeds, extra

e for hardcore gamers, livestreaming, and virtual reality.
The capabilities of the memory, and super-sized storage capacity are what make = = -

ines we talk supercomputers the tools of choice for many researchers. R)
MG hes el : 4 & Y = Modern supercomputers use similar chips, memory, and storage as personal

about so often here at computers, but instead of a few processors they have tens of thousands. What

; Science Node can be 1‘1a1'd to conceptualize. Th?T s why we're going to lay it all distinguishes supercomputers is scale.
Mout for you and explain how supercomputers differ from the laptop on your
desk, and just what it is these machines need all that extra performance for. 1 China’s Sunway TaihuLight, which is currently the fastest supercomputer in

] the world, boasts 10,648,600 cores with a maximum performance of more
| than 93,014.6 teraFLOPS.

Theoretically, the Sunway TaihuLight is capable of reaching 125,436

|

y Intel Core ig Extreme Edition processor. And it 'only’ cost around ¥1.8 billion
o Y:‘

teraFLOPS of performance—more than 125 thousand times faster than the

($270 million), compared to the Intel chip’s price tag of $1,099.

v awien ETHZzirich

Last week

A Repeat: CAS and atomics
A Basis for lockree and waitfree algorithms

A Lockfree

A Stack- single update of headsimpler
A List- manage multiple pointers, importance of mark bits again

A Unbounded Queues
A More complex example for lodkee, how to design a more realisti@tastructure

v awien ETHZzirich

Learning goals today Literature:
Herlihy: Chapter 10

A Memory Reuse and the ABA Problem

A Understand one of the most complex pitfalls in shared memory parallel programmin
A Various solutions

) (Susser 1968)
A Theoretical background (finally!)

A Linearizability
A Consistency
A Histories

A Composability

«“ .. to practice without
theory is to sail an
uncharted sea; theory
without practice is not to
set sail at all”.

v awien ETHZzirich

REUSE AND THE ABA PROBLEM

v awien ETHZzirich

For the sake of simplicity: back tine stackJ

S item
top next
public class ConcurrentStack { l,
AtomicReference <Node>top = new AtomicReference <Node>(); item
next

public void push(Longitem) { A dz l'
publicLong pop() Dz A dz 'ri?t

NULL

v awien ETHZzirich

pop |
Memorize "current

variable head
Node head, next;

top A
do { l
head = top. get (); next 5

If (head == null) return null;
next = head.next ; ‘l'
C

}while (! top.compareAndSet (head, next));

_ Action is taken only
return head.item ; if "the stack state"

} did not change

C €—

v awien ETHZzirich

push
public void push(Longitem){ newi
Node newi = new Nodgitem);
Node head: o
Memorize "current tOp
stack state" in local
do { variable head head

head = top. get (),
newi.next = head,;
}while (! top.compareAndSet (head, newi));

O €— W < > <«

Action is taken only
if "the stack state"
did not change

v awien ETHZzirich

Nodereuse

Assume we do not want to allocate for each push and maintaindz pool
iInstead. Does this work?

public class NodePool {
AtomicReference <Node>top new AtomicReference <Node>() ;

public void puts . T AA T & Dz A dz
public Node gets& Dz A dz
}

public class ConcurrentStackP {
AtomicReference <Node>top = newAtomicReference <Node>();
NodePool pool=new NodePool();

v awien ETHZzirich

NodePoolput and get

public Node get (Long item) {

Norls [Ea). e Only difference to Stack
do{ above: NodePool is{place.
head = top. get ();
if (head == null) return new Node(item);
next = head.next ; ;
}while (! top.compareAndSet (head, next)); A node can be pIaCEd Inone
head.item = item; and only one implace data
return head; -
} structure. This is ok for a
global pool.
public void put (Node n) {
Node head,; _
do { So farthis works.
head = top. get ();
n.next = head,

}while (! top.compareAndSet (head, n));
}

v awien ETHZzirich

Using the node pool

public void push(Long item) {
Node head,;
Node new = pool.get (item);
do {
head = top. get ();
new.next = head,;
}while (! top.compareAndSet (head, new));

}

public Long pop() {
Node head, next;

do {
head = top.get ();
if (head == null) return null;
next = head.next ;
}while (! top.compareAndSet (head, next));

Long item = head.item ;
pool.put (head);
return item;

v awien ETHZzirich

Experiment

A runn consumer and producer threads

A each consumer / producer pushes / pops 10,000 elements and records sum of values
A if apopreturnsan "empty' value retry

A do this 10 times with / without node pool

A measure wall clock time (ms)

A check that sum of pushed values == sum of popped values

Result (of one particular run)

nonblocking stackvithout reuse

n =1, elapsed= 15, normalized= 15

n = 2, elapsed= 110, normalized= 55

n =4, elapsed= 249, normalized= 62

n = 8, elapsed= 843, normalized= 105

n = 16, elapsed= 1653, normalized= 103
n = 32, elapsed= 3978, normalized= 124
n = 64, elapsed= 9953, normalized= 155
n = 128, elapsed= 2499%¢ormalized= 195

v awien ETHZzirich

nonblocking stackvith reuse

n =1, elapsed= 47, normalized= 47

n = 2, elapsed= 109, normalized= 54

n =4, elapsed= 312, normalized= 78

n = 8, elapsed= 577, normalized= 72

n =16, elapsed= 1747, normalized= 109
n = 32, elapsed= 2917, normalized= 91
n = 64, elapsed= 6599, normalized= 103
n = 128, elapsed= 120909prmalized= 94

yieppien...

v awien ETHZzirich

But other runs ...

nonblocking stackvith reuse nonblocking stackvith reuse

n =1, elapsed= 62, normalized= 62 n =1, elapsed= 48, normalized= 48

n = 2, elapsed= 78, normalized= 39 n = 2, elapsed= 94, normalized= 47

n =4, elapsed= 250, normalized= 62 n = 4, elapsed= 265, normalized= 66

n = 8, elapsed= 515, normalized= 64 n = 8, elapsed= 530, normalized= 66

n = 16, elapsed= 1280, normalized= 80 n = 16, elapsed= 1248, normalized= 78
n = 32, elapsed= 2629, normalized= 82 [and does not return]

Exception in thread "main"”
java.lang.RuntimeException
sums of pushes and pops don't match

at stack.Measurement.main(Measurement.java:107)

_ why?

ABA Problem

Thread X

in the middle

of pop: after read
but before CAS

head
top
NEXt =—
NULL
time

Thread Y
pops A

Thread Z
pushes B

| |

NULL NULL

public Long pop() {
Node head, next;
do {
head = top.get ();
if (head == null) return null;
next= head.next ;
}while (! top.compareAndSet (head, next));
Longitem = head.item ; pool.put (head); return item;

Thread Z'
pushes A

Pool BN

top

Eé— €< W

v o ETHZzUrich

Thread X
completes pop

head -/,'>

top ’/' B
A
next

L NULL

public void push(Long item) {
Node head;

Node
do {

new = pool.get (item);

head = top. get ();
new.next = head;

}while (! top.compareAndSet (head, new));

14

v awien ETHZzirich

The ABAProblem

"The ABA problem ... occurs when one activity fails to recognize that a singl
memory location was modified temporarily by another activity and therefore
erroneously assumes that the overall state has not been changed."

X observes meanwhile V .. and back to A X observes A again
Variable V as A changesto B ... and assumes the

state is unchanged

—> A —> B —> A —> A

time

v awien ETHZzirich

How to solve the ABA problem?

DCAS (double compare and swap)
not available on most platforms (we have used a variant for the-ficklist set)

Garbage Collection
relies on the existence of a GC
much too slow to use in the inner loop of a runtime kernel
can you implement a loekee garbage collector relying on garbage collection?

Pointer Tagging
doesnot curethe problem, rather delayit
canbe practical

Hazard Pointers
Transactional memory (later)

v awien ETHZzirich

Pointer Tagging

ABA problem usually occurs with CASomters
Aligned addresses (values of pointers) make some bits availalpeifder

tagging.

Example: pointer aligned modulo 225 bits available for tagging

oo

MSB XIXI XX XXX X|]0]0]0]O0]O

Each time a pointer is stored in a data structure, the tag is increased by one
Access to a data structure via address(x mod 32)

This makes the ABA problem very much less probable because now 32 ver
of each pointer exist.

v awien ETHZzirich

Hazard Pointers

The ABA problem stems from reuse of a pointer P that has been read by so
thread X but not yet written with CAS by the same thrddddificationtakes
placemeanwhileby someotherthread.

|deato solve

A before X reads P, it marks it hazarduous by entering it in one of the n (n=
number threads) slots of an array associated with the data structure (e.g.,
the stack)

A Whenfinished(after the CAS), processr¥movesP fromthe array
A Beforea processYtriesto reuseP,it checksall entriesof the hazardarray

HazardPointers

public clasdNonBlockingStackPooledHazardGloleatends Stack {
AtomicReferenceNode> top =new AtomicReferenceNode>();
NodePoolHazargdool,
AtomicReferenceArragNode>hazarduous

public NonBlockingStackPooledHazardGlobal(int nThreads) {
hazarduous= new AtomicReferenceArragNode>(nThreads;
pool=newNodePoolHazalf@aThread$;

v awien ETHZzirich

null | null | null | null | null | null | null | null | null | null

null

null

nThreadsl

spcl.inf.ethz.ch
YW @spcl_eth

ETH:zurich

HazardPointers

null

null

null

null

null

null

y | null

null

null

boolean isHazarduous(Node node) {
for (int 1 = O; 1 < hazarduous.length(); ++1)
If (hazarduous.get(i) == node)
return true;
return false;

void setHazardous(Node node) {
hazarduous.set(id, node); d is current thread id

nThreadsl

spcl.inf.ethz.ch

yW @spcl_eth E'HZUFICh

HazardPOInterS null | null { null { null { null | hd Jnull} y | null | x | null | null

0 id nThreadsl

publicint pop(int id) {

Nodehead next= null: public voidpush(int id, Long item) {
do { Node head,
do { Node newi = pool.get(id, item);
head=top.get(); do{
s_.etHazarduous(head); head = top.get();
}uhile (head == null top.get) = heag newi.next = head;
next=head.nex : :
| :
} while (Itop.compareAndSet(head, next)), } while (itop.compareAndSet(head, newi);
setHazarduous(null); }

Int item =head.item
if (lisHazardouéea :

(pool.put(id,erqmeag))? ThIS ensures that no other thread
return item: Is already past the CAS and has

} not seen our hazard pointer

v awien ETHZzirich

Howto protect the NodePool?

"he ABAdroblemalsooccursonthe nodepool.
Twosolutions

"hreadlocalnodepools
A No protectionnecessary
A Doesnot helpwhen push/pop operationsare not well balanced

Hazardpointerson the globalnode pool

A Expensiveperationfor nodereuse

A Equivalento codeabove nodepoolreturnsa nodeonlywhenit is not
hazarduous

v awien ETHZzirich

Remarks

The Java code above does not really improve performance in comparison tc
memory allocation plus garbage collection.

Butit demonstrateshow to solvethe ABAproblemprincipally

Thehazardpointersare placedin thread-local storage

When threadlocal storage can be replaced by procedsaonl storage, it scales
better*.

* e.g., in Florian Negel€ombining Lockree Programming with Cooperative Multitask
for a Portable Multiprocessor Runtime SystéthD Thesis, ETH Zurich 2014

v awien ETHZzirich

_essond.earned

_ockfree programming new kind of problemsin comparisoro lock-based
programming

A Atomicupdateof severalpointers/ valuesimpossible leadingto new kind of
problemsandsolutions suchasthreadsthat help eachother in orderto
guaranteeglobalprogress

A ABA problem (which disappears with a garbage collector)

v awien ETHZzirich

wSOFLI ¢S KIFIgS asSSy X
A algorithms to implement critical sections and locks
A hardware support for implementing critical sections and locks

A how to reason about concurrent algorithms using state diagrams

A high-level constructs such as semaphores and monitors that raise the lev
of abstraction

A lockfree implementations that require Readodify-Write operations

Literature:
Herliny: Chapter 3.13.6

v awien ETHZzirich

dziY 6S KI @S y20 6éSuv X
developed a clear overview of the theoretical concepts and notions behind
such as
A consistency
A linearizability
A consensus

A alanguagdo talk formallyaboutconcurrency
| havebeenveryhandwavywhenansweringsometricky questions

A nowthat youappreciatethe complexity
Letusintroduce somenontrivial formalismto captureit

v awien ETHZzirich

Example: Singk=ngueuer/Deqgueuer bounded FIFO queue

class WaitFreeQueue {

volatile int head = 0, tail = 0; T
AtomicReferenceArray<T>[] items = Given that there is only one i
new AtomicReferenceArray<T>(capacity); enqueuer and one K= head % capacity
dequeuer process. Is the _—
public boolean eng(T x) { implementation of the FIFO
if (tail Z head == capacity) return false; queue from above correct? B
items.set((tail+1) % capacity, X); Why/why not?
tail ++; A 2 [&3 i
return true; — ﬁ
} b
blic T deq() { -
public T deq _ —
if (tall - head == 0) return null; Fora c_or_murrent, locking d
int x = items.get((head+1) % capacity); queue ILis easier {o argue. o
n 9 pacty), Why/why not?
head++; v
return x; ¢ head

v awien ETHZzirich

Sequential Objectg SequentialSpecificationgyou know this)

An object (e.d., In Java or C++) Is a container for data and provides
A asetof methodsto manipulatedata

Anobjecthasawell defined
A state beingmodifiedduringmethod invocations

WellestablishedasFloydHoarelogicto provecorrectness

A Definingthe objects behavior in terms of a setfmfe- and postconditions
for each method isnherentlysequential

Canwe carrythat forward to a parallelformulation?

v awien ETHZzirich

Method Calls

A method callis the interval that starts with amvocationand ends with a

response
A method call is callggendingbetween invocation and response.

Thread ----------------- Pl - - - - - = === === mm - meeecccccccccccccescccmo e

Invocation response

v awien ETHZzirich

Sequentialvs. Concurrent

Meaningfulstate of objectsonly
betweenmethod calls

Method callscanoverlap. Objectmight
neverbe betweenmethodcalls
Exceptionperiodsof quiescence

Methodsdescribedn isolation.

All possibleinteractionswith concurrent
callsmustbe takeninto account

Canadd new methodswithout
affectingolder methods

Must take into accountthat everything
caninteract with everythingelse

"Globalclock

"Objectclock

BlockingQueueBehavior

g.deq)
Thread A ~=====""======="-

g.en® X U

Thread B

v awien ETHZzirich

Which thread got the lock first?

With locking it becomes
simple to argue: things
become sequential. Can
we formalize this?

—p
time

v awien ETHZzirich

Linearizability
G2 KIFdya GKS RAFFSNBYOS 0SGsSSy
2 Sttt AY OGUKS2NWEBorel KSNBE Aad y2ySoé

32

v awien ETHZzirich

Linearizability

Each method shouldppearto take effectinstantaneouslybetween
Invocation and response events.

An object for which this is true for all possible executions is called
linearizable

The object is correct if the associated sequential behavior is correct.

v awien ETHZzirich

Is this particular execution linearizable?

g.enyy) g.deq) A X

ETH:zurich

Yes
g.eng(x) q.deq)AYy

A cemmmmmmeeeee o—f—e oo i -------- oo
g.enyy) g.deq) A X

B ----------mmeee- *~— - O—— @

v awien ETHZzirich

Linearizabl@
g.enqx) q.deq)AYy
A e - s S ——
g.enq(y)
I Q) - — = = = = = = = = = = == == == m

v awien ETHZzirich

xisfirst in queue \

- - .

37

v awien ETHZzirich

Linearizable&?

A aend) gde)Ay
g.enyy) g.deq) A x
B oo e —— R LR P e

ETH:zurich

Yes

v awien ETHZzirich

Andyes anotherscenaria

v awien ETHZzirich

Read/Write RegisteExample

write(0) write(2)

A e o e
write(1) read)A 1

o I O —ll) = ~ (Y —). - - = - - -

v awien ETHZzirich

Linearizable!

write(0) write(2)
A eemeeeemmoeeeee- s ol -
write(1) read)A 1
2 S —— — - —— -
i o —

v awien ETHZzirich

Linearizabl@

write(0) read)A 1 write(2)

A oo * —e O&—e o—e
write(1) read()A 1
o S P @) - - - Q) - - - - - -

v awien ETHZzirich

write(0) read)A 1 write(2)

— —— e
write(1) read)A 1
- —— — § s ——e
write(1) must |
havehappened:
L O —

v awien ETHZzirich

Remark

A We talk aboutexecutionsin order to abstract away from actual method
content.
A A simplification you need to revert (mentally?) for analyzing codes

A Thelinearization pointscan often be specified, but they may dependtba
execution(not only the source code).

A EX&mple: if the quUeue IS empty’ public int deq() throws EmptyException {

a dequeuemay fail i (tail == head)
while it doesnot failwith throw new EmptyException();
a nor‘rempty gueue int X = items.get(head++ % capacity);

@ return x;

}

v awien ETHZzirich

More formal

Splitmethod callsinto two events Notation:

Invocation Response
A g.enq(x) A g: void

/ | ~ | ~
‘ thread‘ \‘ arguments‘ ‘ thread‘ ‘ result ‘

‘ ob"ectH method‘ ‘ obj'ect ‘

v awien ETHZzirich

History

History H = sequence of invocations and responses

—

Ag.enq?3) >

A g:void

Ag.enqb) <

Bp.enq4)
>

B p:void

Bqg.deq)
B q:3

>

Invocationsandresponsematch, if thread
namesagreeandobjectnamesagree

Aninvocationis pendingif it hasno matching
response

A subhistoryiscompletewhenit hasno
pendingresponses

v awien ETHZzirich

Projections

Object projections
Ag.en3)
Aqg:void
Aqg.enq5)

H|g =

Bg.deq)
Bqg:3

Threadprojections
Bp.enq4)
Bp:void
Bg.deq)
H‘ B= Bqg:3

v awien ETHZzirich

Completesubhistories

Ag.enq3) Completesubhistory
A .. id HistoryH without its
4.vol pendinginvocations

Ag.enq>)
Bp.enq4)

complete (H) B p:void
Bqg.deq)
B Q.3

Sequentialhistories
Ag.enq?3)
A qg:void >

Bp.enq4)
B p:void >

Bg.deq)
B Qg:3 >
A g:enq(5)

v awien ETHZzirich

Sequentialhistory:

A Method callsof different threadsdo not
Interleave

A A finalpendinginvocationis ok.

Well formed histories

H= Aqg.enq3)
Bp.enq4)
B p:void
Bqg.deq)
A g:void
B (Q:3

v awien ETHZzirich

Well formed history:
Perthread projectionssequential

H|IA = Ag.enq?3)
A g:.void

H|B = Bp.enq4)
B p:void
Bqg.deq)
B (Q:3

Equivalenthistories

Aqg.enq3)
Bp.enq4)
B p:void
Bg.deq)
A g:void
B Qq:3

Aqg.enq3)
A qg:void
Bp.enq4)
B p:void
Bg.deq)
BQg:3

v awien ETHZzirich

HandG
equivalent

HIA = G|A
HIB = G|B

v awien ETHZzirich

Legalhistories

Sequentiakpecificatiortellsif a A sequentialhistoryHislegal, if
singlethreaded singleobject A for everyobjectx
historyis legal A H|x adheresto the sequential

Examplepre-/ postconditions specificationof x

Precedence

A method callprecedesanothermethod

callif the response event precedes the

Invocationevent

Ag.enq3)
Bp.enq4)
B p:void
A qg:void
Bg.deq)
B g:3

v awien ETHZzirich

If no precedence then methochlls
overlap

Ag.enq3)
Bp.enq4)
B p:void
Bg.deq)
A qg:void
B g:3

v awien ETHZzirich

Notation
Given history 'Oand method executionsad anda onO

Definition:C0 ©_ 0 meansd precedes

—

O isarelation andimpliesa partialorderon H. Theorder istotal whenHis

sequential

v awien ETHZzirich

Linearizability

History ‘Ois linearizable if it can be extended to a histoi§
A appendingzeroor more responsedo pendinginvocationsthat took effect
A discardingzeroor more pendinginvocationsthat did not take effect

suchthat Gis equivalentto alegal sequentialhistory “Ywith

°,09

v awien ETHZzirich

Invocationsthat took effect X K

cannot be removed
because B already took

q e C(X) effect into account

canbe removed

ﬂag] I’eaC() A ? nobodyrelieson this
C _________________ _.aa.n...o.'.n.p.q.q.q.sn.l.a.a.l.QJ.O.’.’.P.Q.Q.Q.Q.!.!.!.

v awien ETHZzirich

o Qo | ? What does this mean?

L | e |
° T F© 'I}h{'o 'IB In other words: S respects
the reattime order of G

Linearizabilitylimitation on
the possible choice of S

a C
N o ——g@------------ L e [, SOGETEEEEERR R
b A
B - @] | - - e

v awien ETHZzirich

Composability

ComposabilityTheorem

History H is linearizable if and only if
for everyobjectx
H|x islinearizable

Conseqguence:
Modularity

A Linearizabilityof objectscanbe provenin
ISolation

A Independentlyimplementedobjectscan
be composed

v awien ETHZzirich

Recall: Atomic Registers

Memory location for values of primitive type (boolean, Int, ...)
A operations read and write

Linearizable with a single linearization point, I.e.

A sequentially consistent, every read operation yields most recently written
value

A for nonoverlapping operations, the realtime order is respected.

v awien ETHZzirich

ReasonindAbout Linearizability(Locking

public T deq() throws EmptyException {

lock.lock (); head
try {

If (tail == head)

throw new EmptyException ();

T x = items[head % items.length];

head++;

return X;

} finally {
[lock.unlock ();

}

tail

) ————— Linearization points
are when locks are released

v awien ETHZzirich

Reasoning About Linearizability (Wdlitee example)

class WaitFreeQueue {
volatile int head = 0, tail=0;
AtomicReferenceArray<T>[] items = head
new AtomicReferenceArray<T>(capacity);

| Linearization point
public boolean enq (T x) {
if (ta[il Z heap == capacity) retuyn false;

items.set((tall+2) % capacity, X); Linearization pOl nt
tai|++; e ——
retum True; for (only one)
} tail

enqueuer

public T deq() {

(T head ==) RETT——— Linearization point

int X = items.get((head+1) % capacity);

[head++: Linearization point
return x;

:\
} for (only one)
} dequeuer

v awien ETHZzirich

Reasoning About Linearizability (Lofiee example)

public T dequeue() {
while (true) {
Node first = head.get();
Node last = tail.get();

Node next = first.next.get(); Linearization point
If (first == |ast){ /
if (n[a_x[t == null) returnfTa,;

else tail.compareAndSeW
} . L :
Linearization point

else {
T value = next.item;

if (h¢ad.compareAndSet(fir t
return value;

) Linearization point

v o ETHZzUrich

Appendix (for next lecture)

64

v awien ETHZzirich

Appendix: Atomic Registers have consensus number 1.

Theorem: Atomic Registers have consensus number 1.

Proof strategy:

A Assume otherwise

A Reason about the properties of any such protocol
A Derive a contradiction

A Suffices to prove for binary consensus and n=2

v awien ETHZzirich

Wait-Free Computation

A moves \ B moves

EitherAorBa Y2 @S & ¢
Moving means

Register read or
Register write

» ETHzurich

The TweMove Tree

Final states [© 1 Inltlal state

v awien ETHZzirich

Decision Values

v awien ETHZzirich

Bivalent: Both Possible

bivalent

C_ 2
o~

-

v awien ETHZzirich

Univalent: Single Value Possible

© univalent

v awien ETHZzirich

x-valent: x Only Possible Decision

© 1-valent
P ED{
S5 o >

TE22=

Summary

Wait-free computation is a tree
Bivalent system states
A Outcome not fixed

Univalent states

A Outcome is fixed
Aal @& y20 0S aly26yé
1-Valent and &valent states

e S

v awien ETHZzirich

Claim

Some Initial state Is bivalent

Outcome depends on
AChance
AWhim of the scheduler

adzZ GALINROSA a

Lets prove this claim

2NJ 32 R34

R 2

ETH:zurich

LJE |-

v awien ETHZzirich

Both Inputs O

Univalent: all executions must decide O

v awien ETHZzirich

Both Inputs O

Q>

=

Including this solo execution b

v awien ETHZzirich

Both Inputs 1

LA
&

All executions must decide 1

v awien ETHZzirich

Both Inputs 1

A
<2 [

Including this solo execution bk

v awien ETHZzirich

What if inputs differ?

By Way of contradictiorf univalent
all executions must decide on same value

v awien ETHZzirich

The Possible Executions

Include the solo execution by A
that decides O

v awien ETHZzirich

The Possible Executions

Also include the solo execution by
which we know decides 1

v awien ETHZzirich

Possible Executions Include

(How univalent is that?)
(QED)

.
F S 2 W

Solo execution by A must decide 0 Solo execution byB must decide 1

