ETHzurich

Linf.ethz.ch
v omoen DINFK

Transactional memory going
TORSTEMOEFLER mainstream with Intel Haswell

,' \ f"’\..‘-’ ;
- oy
ar.y Lak MR T 4

Transactional memory is a promising technique

Parallel Programming
Transactional Memory &

CPUs
by Scott Wasson — 1:28 PM orf August 12, 2014

,\'.
|\

atomixc {

software right about now.

1'F (X ! - y) . W call them—in Haswell's TSX implementation that can cause critical software failures.

Errata prompts Intel to disable TSX in Haswell, early Broadwell

The TSX instructions built into Intel's Haswell CPU cores haven't become widely used by everyday
software just yet, but they promise to make certain types of multithreaded applications run much
| faster than they can today. Some of the savviest software developers are likely building TSX-enabled

Unfortunately, that work may have to come to a halt, thanks to a bug—or "errata," as Intel prefers to

Whlle t r'ue) { | believe my friend David Kanter was first to report
! this problemvia a tweet the other day. Intel

revealed the news of the erratum to a group of

™ journalists during briefings in Portland last week. |

was among those in attendance and was able to

o talk with Intel architects about the situation.

The TSX problem was apparently discovered by a
software developer outside of Intel, and the

company then confirmed the erratum through its
own testing. Errata of this magnitude aren't often dif

As is customary in such cases, Intel has disabled the
CPU microcode update delivered via new revisions o
ensure stable operation for Haswell CPUs, but those

TSX's features, including hardware lock elision and r

Software developers who wish to continue working |
systems to newer firmware revisions—and in doing g
corruption or crashes.

Intel Launches Kaby-Lake based Xeons The E3-

1200 v6 Family

y Ian Cutress ¢ :‘ 0 PM EST

Posted in CPUs el Xeon Enterprise enterprise CPUs

Intel® Xeon®
Processor
E3-1200 V6

X

E3 Optane E

+Add A
Comment

200v6 E3-1200

v+

3333
3333
3333
3338

l!
13
> 9
1

The high-end E3 v6 parts will have a maximum base frequency of 3.9 GHz base and a 4.2 GHz turbo. All the

parts listed have a full 8MB of L3 cache, and either be 72W for non-IGP models or 73W for IGP parts. As

however TSX (Transactional Extensions) were not listed.|

with other previous Xeons, these come with ECC memory support, vPro and other technologies Intel files

SGX (Software Guard Extensions) are included,

—

—T T T

v awien ETHZzirich

The Consensus Hierarchy

1 Read/Write Registers

2 getAndSetgetAndincrement. X FIFQQueue
LIFO Stack

Hb CompareAndSet X Multiple Assignment

v awien ETHZzirich

Consensusconclusion

A Consensuss the simplestwait-free problem
A Easyto defineandprove (will comelater)

A Consensusumber

A Howmanythreadscanobjectsof classCcoordinate(wait-free)?

Wait-free FIFO queues have consensusber2
TestAnd-Set, getAndSet, getAndincrement have consenaosoer2
CAS has consensus numHber

A Consensugselfisa powerfultool to proveimpossibility
A Sawit with the FIFOqueue
A Here,we discusonly wait-free

v awien ETHZzirich

Motivation for

TransactionaMemory

v awien ETHZzirich

Transactional Memory in a nutshell

Motivation: programming with locks is too difficult
Lockfree programming is even more difficult...

Goal remove the burden of synchronization from the programmer and place
In the system (hardware / software)

Literature:
-Herliny Chapter 18.& 18.2.
-Herlihy Chapter 18.3. interesting but too detailed for this course.

v awien ETHZzirich

What is wrong with locking?

Deadlocksthreads attempt to take common locks in different orders

|

"

@l*

.
s

s

v awien ETHZzirich

What is wrong with locking?

Convoying thread holding a resource R is descheduled while other threads
gueue up waiting for R

v awien ETHZzirich

What is wrong with locking?

Priority Inversion lower priority thread holds a resource R that a high priority
thread Is waiting on

v awien ETHZzirich

What is wrong with locking?

Association of locks and data establishgttonvention
The best you can do isasonably documenyour code!

v awien ETHZzirich

What is wrong with CAS?

Example: Unbounded Queue (FIFO)

value value value value value
sentinel node node node node node
head tail
public class LockFreeQueue<T> { public class Node {
private AtomicReference<Node> public T value;
head; public AtomicReference<Node> next;
private AtomicReference<Node> public Node(T v) {
tail; value = v;
next = new
public void enq(T item); AtomicReference<Node>(null);
public T deq(); }

v awien ETHZzirich

Enqueue

value value value value value value
CAS next[

S node node node node node — new
head tail /
CAS tall

Two CAS operatios
half finished enqueue
visibleto other processes

v awien ETHZzirich

Dequeue

value value value value value

node node node node node

/c' T
head head tail

v awien ETHZzirich

Code for Engueue

public class LockFreeQueue<T> {

public void enq(T item) {
Node node = new Node(item);
while(true){
Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {
if (next == null)
if (last.next.compareAndSet(next, node)) {
tail.compareAndSet(last, node);
return;

Half finished insert may happen!

}

else

tail.compareAndSet(last, next) Help other processes with finishing

} operations A lockfree)

v awien ETHZzirich

Code with hypothetical DCAS

public class LockFreeQueue<T> {

public void enq(T item) {
Node node = new Node(item);
while(true) {
Node last = tail.get();
Node next = last.next.get();
if (multiCompareAndSet({last.next, tail},{next, last},{node, node})

return;
} This code ensures consistency of both next and last:
operationeither fails completely without effect or
} the effect happens atomically

v awien ETHZzirich

More problems: Bank account

class Account {
private final Integer id; /[account id
private Integer balance; /[account balance

Account(int id, int balance){
this.id new Integer(id);
this.balance new Integer(balance);

}

synchronized void withdraw(int amount) {
/[assume that there are always sufficient funds...

this.balance = this.balance Z amount;
}
synchronized void deposit(int amount) {
this.balance = this.balance + amount;
}

}

v awien ETHZzirich

Bank account transfer (unsafe)

void transfer unsafe (Accounta, Accountb, int amount) {

a.withdraw (amount); | Transfer does not happen
b.deposit (amount); | > atomically

v
A thread might observe the withdraw,

but not the deposit

v awien ETHZzirich

Bank account transfer (can cause a deadlock)

void transfer deadlock (Accounta, Accountb, int amount) {
synchronized (@) {
synchronized (b) {
a.withdraw (amount);
b.deposit (amount);

Concurrently executing:

A transfer_deadlock (a, b)
A transfer_deadlock (b, a)
Might lead to a deadlock

v awien ETHZzirich

Bank account transfer (lock ordering to avoid deadlock)

void transfer(Account a, Account b, int amount) {
if (a.id < b.id) {
synchronized (@) {
synchronized (b) {
a.withdraw (amount);
b.deposit (amount);

}

} else {
synchronized (b) {
synchronized (@) {
a.withdraw (amount);
b.deposit (amount);

v awien ETHZzirich

Bank account transfer (slightly better ordering version)

void transfer elegant (Account a, Account Db, int amount) {
8 Account first, second,;
o | if (a.id < b.id) {
o} first = a;
= second = b;
€11 else {
= first = b;
= second = a;
S}
=}
N
2 | synchronized (first) {
o synchronized (second) {

a.withdraw (amount); :
b.deposit (amount); Code for the actual operation

v awien ETHZzirich

Lack of composabillity

Ensuring ordering (and correctnessjaally hard
(even for advanced programmers)

s+ rules are aehoc, and not part of the program

» (documented in comments at bestse scenario)

Locks arenot composable
» how can you combina thread-safe operations?

» Internal detalls about locking are required
+0A3 LINROEfSYX SAaLISOAINffeE F2NJ LINEINI YY

v awien ETHZzirich

Problems using locks (cont'd)

Locks are pessimistic
s worst is assumed
s performance overhead paid every time

Locking mechanism is havdred to the program
s Synchronization / rest of the program cannot be separated

o’ -’

s OKIF yIAAY3I a8yOKNRYAIFOGA2Y &a0OKSYS ™ O

v awien ETHZzirich

Solution: atomic blocks (or transactions)

What the programmer actually meant to say Is:

atomic { | want these operations
a. withdraw (amount); to be performed atomically!

b. deposit (amount);

. f K)
\f‘“\‘-ﬁg’f&

M ¢KA& A& UKS ARSI O0SKAYR UNYXVYat
Ff a2 O0SKAYR 2014z ka&ytti AGK ¢

Transactional Memory (TM)

Programmer explicitly definesgomic code sections

Programmer is concerned with:
what: what operations should be atomic

but, not how: e.g., via locking
the how is left to the system (software, hardware or both)

(declarative approach)

v awien ETHZzirich

v awien ETHZzirich

TM benefits

+ simpler and less errgorone code
» higherlevel (declarative) semantics (what vs. how)
4+ composable

» analogy to garbage collection
(Dan Grossman. 2007 he transactional memory / garbage collection analogyGPLAN Not.
42, 10 (October 2007), 69R)6.)

» optimisticby design
(does not require mutual exclusion)

v awien ETHZzirich

TM semanticsAtomicity

changes made by a transaction are
made visible atomically

other threads preserve either the initial or the final state, but not any
Intermediate states

Note: locks enforce atomicity via mutual exclusion, while transactions
do not require mutual exclusion

v awien ETHZzirich

TM semanticsisolation

Transactions run in isolation
» While a transaction is running, effects from other transactions are not observed

s as If the transaction takes a snapshot of the global state when it begins and then
operates on that snapshot

v awien ETHZzirich

Serializability

Thread O Thread 1

X
as If:
X Executed Sequentially)
X l
TX

(transactionsappearserialized)

v awien ETHZzirich

Transactions In databases

Transactional Memory is heavily inspired by database transactions

AClIDproperties in database transactions:

s Atomicity

s Consistency (database remains in a consistent state)

s Isolation (no mutual corruption of data)

s 5dzNy 0OAf AG@ o0SPIPE UNIyal OQurazy STFFSOI

spcl.inf.ethz.ch
YW @spcl_eth

ETH:zurich

How to implement TM?

Which are missing?

Big lock around all atomiz-secuons
A gives (nearly all) desired properties, but not scalable
A not done in practice for obvious reasons

Keep track of operations performed by each transaction

A concurrency control
A system ensures atomicity and isolation properties

v awien ETHZzirich

What happens when a conflict occurs?

Conflict example: a transaction (not yet committed) has read a value that we

changed by a transaction that has committed
Initially: a =0
TX %
atomic { atomic {

]

Xx=a /lreada é =10 // write a
If (x ==0){ '
' }

} else:{

}

