
spcl.inf.ethz.ch

@spcl_eth

TORSTENHOEFLER

Parallel Programming

Transactional Memory &
Programming based on
Message Passing

Χ

spcl.inf.ethz.ch

@spcl_eth

1 Read/Write Registers

2 getAndSet, getAndIncrementΣ Χ FIFOQueue
LIFO Stack

.

.

Њ CompareAndSetΣ Χ Multiple Assignment

The Consensus Hierarchy

2

spcl.inf.ethz.ch

@spcl_eth

ÁConsensus is the simplestwait-freeproblem
ÁEasy to defineand prove(will comelater)

ÁConsensus number
ÁHowmanythreadscanobjectsof classC coordinate(wait-free)?

Wait-free FIFO queues have consensus number2

Test-And-Set, getAndSet, getAndIncrement have consensus number2

CAS has consensus number Њ

ÁConsensus itself isa powerful tool to proveimpossibility!
ÁSaw it with the FIFO queue

ÁHere, we discussonlywait-free

Consensus - conclusion

3

spcl.inf.ethz.ch

@spcl_eth

Motivation for

TransactionalMemory

4

spcl.inf.ethz.ch

@spcl_eth

Motivation : programming with locks is too difficult

Lock-free programming is even more difficult...

Goal: remove the burden of synchronization from the programmer and place it
in the system (hardware / software)

Transactional Memory in a nutshell

Literature:
-Herlihy Chapter 18.1 ς18.2.
-Herlihy Chapter 18.3. interesting but too detailed for this course.

5

spcl.inf.ethz.ch

@spcl_eth

Deadlocks: threads attempt to take common locks in different orders

What is wrong with locking?

6

spcl.inf.ethz.ch

@spcl_eth

Convoying: thread holding a resource R is descheduled while other threads
queue up waiting for R

What is wrong with locking?

7

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion: lower priority thread holds a resource R that a high priority
thread is waiting on

What is wrong with locking?

8

spcl.inf.ethz.ch

@spcl_eth

Association of locks and data established by convention.

The best you can do is reasonably document your code!

What is wrong with locking?

9

spcl.inf.ethz.ch

@spcl_eth

Example: Unbounded Queue (FIFO)

What is wrong with CAS?

sentinel node node node node node

head tail

value value value value value

public class LockFreeQueue<T> {

private AtomicReference<Node>

head;

private AtomicReference<Node>

tail;

public void enq(T item);

public T deq();

}

public class Node {

public T value;

public AtomicReference<Node> next;

public Node(T v) {

value = v;

next = new

AtomicReference<Node>(null);

}

}
10

spcl.inf.ethz.ch

@spcl_eth

Enqueue

S node node node node node

head tail

new

CAS next

CAS tail

value value value value value value

Two CAS operations Ą
half finished enqueue
visible to other processes

11

spcl.inf.ethz.ch

@spcl_eth

Dequeue

S node node node node node

head tail

value value value value value
read
value

CAS
head

12

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {
..

public void enq(T item) {
Node node = new Node(item);
while(true){

Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {

if (next == null)
if (last.next.compareAndSet(next, node)) {

tail.compareAndSet(last, node);
return;

}
else

tail.compareAndSet(last, next);
}

}
}

}

Code for Enqueue

Half finished insert may happen!

Help other processes with finishing
operations (Ą lock-free)

13

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {

..

public void enq(T item) {

Node node = new Node(item);

while(true) {

Node last = tail.get();

Node next = last.next.get();

if (multiCompareAndSet({last.next, tail},{next, last},{node, node})

return;

}

}

}

Code with hypothetical DCAS

This code ensures consistency of both next and last:
operation either fails completely without effect or
the effect happens atomically

14

spcl.inf.ethz.ch

@spcl_eth

class Account {
private final Integer id; // account id
private Integer balance; // account balance

Account(int id, int balance) {
this.id = new Integer(id);
this.balance = new Integer(balance);

}

synchronized void withdraw(int amount) {
// assume that there are always sufficient funds...
this.balance = this.balance Ƶamount;

}

synchronized void deposit(int amount) {
this.balance = this.balance + amount;

}
}

More problems: Bank account

15

spcl.inf.ethz.ch

@spcl_eth

void transfer_unsafe (Account a, Account b, int amount) {

a.withdraw (amount);
b.deposit (amount);

}

Bank account transfer (unsafe)

Transfer does not happen
atomically

A thread might observe the withdraw,
but not the deposit

16

spcl.inf.ethz.ch

@spcl_eth

void transfer_deadlock (Account a, Account b, int amount) {
synchronized (a) {

synchronized (b) {
a.withdraw (amount);
b.deposit (amount);

}
}

}

Bank account transfer (can cause a deadlock)

17

Concurrently executing:

Á transfer_deadlock (a, b)

Á transfer_deadlock (b, a)

Might lead to a deadlock

spcl.inf.ethz.ch

@spcl_eth

void transfer(Account a, Account b, int amount) {
if (a.id < b.id) {

synchronized (a) {
synchronized (b) {

a.withdraw (amount);
b.deposit (amount);

}
}

} else {
synchronized (b) {

synchronized (a) {
a.withdraw (amount);
b.deposit (amount);

}
}

}
}

Bank account transfer (lock ordering to avoid deadlock)

18

spcl.inf.ethz.ch

@spcl_eth

void transfer_elegant (Account a, Account b, int amount) {

Account first, second;
if (a.id < b.id) {

first = a;
second = b;

} else {
first = b;
second = a;

}

synchronized (first) {
synchronized (second) {

a.withdraw (amount);
b.deposit (amount);

}
}

}

Bank account transfer (slightly better ordering version)

Code for the actual operation

C
o

d
e

 fo
r sy

n
ch

ro
n

iza
tio

n

19

spcl.inf.ethz.ch

@spcl_eth

Ensuring ordering (and correctness) is really hard
(even for advanced programmers)

Á rules are ad-hoc, and not part of the program

Á (documented in comments at best-case scenario)

Locks are not composable
Á how can you combine n thread-safe operations?

Á internal details about locking are required

Á ōƛƎ ǇǊƻōƭŜƳΣ ŜǎǇŜŎƛŀƭƭȅ ŦƻǊ ǇǊƻƎǊŀƳƳƛƴƎ άƛƴ ǘƘŜ ƭŀǊƎŜέ

Lack of composability

20

spcl.inf.ethz.ch

@spcl_eth

Locks are pessimistic
ǒ worst is assumed

ǒ performance overhead paid every time

Locking mechanism is hard-wired to the program
ǒ synchronization / rest of the program cannot be separated

ǒ ŎƘŀƴƎƛƴƎ ǎȅƴŎƘǊƻƴƛȊŀǘƛƻƴ ǎŎƘŜƳŜ Ҧ ŎƘŀƴƎƛƴƎ ŀƭƭ ƻŦ ǘƘŜ ǇǊƻƎǊŀƳ

Problems using locks (cont'd)

21

spcl.inf.ethz.ch

@spcl_eth

What the programmer actually meant to say is:

atomic {
a. withdraw (amount);
b. deposit (amount);

}

Ҧ ¢Ƙƛǎ ƛǎ ǘƘŜ ƛŘŜŀ ōŜƘƛƴŘ ǘǊŀƴǎŀŎǘƛƻƴŀƭ ƳŜƳƻǊȅ

ŀƭǎƻ ōŜƘƛƴŘ ƭƻŎƪǎΣ ƛǎƴΩǘ ƛǘΚ ¢ƘŜ ŘƛŦŦŜǊŜƴŎŜ ƛǎ ǘƘŜ execution!

Solution: atomic blocks (or transactions)

I want these operations
to be performed atomically!

22

atomic {
a. withdraw (amount);
b. deposit (amount);

}

spcl.inf.ethz.ch

@spcl_eth

Programmer explicitly defines atomic code sections

Programmer is concerned with:
what: what operations should be atomic

but, not how: e.g., via locking
the how is left to the system (software, hardware or both)

(declarative approach)

Transactional Memory (TM)

23

spcl.inf.ethz.ch

@spcl_eth

Á simpler and less error-prone code

Á higher-level (declarative) semantics (what vs. how)

Á composable

Á analogy to garbage collection
(Dan Grossman. 2007. "The transactional memory / garbage collection analogy". SIGPLAN Not.
42, 10 (October 2007), 695-706.)

Á optimisticby design
(does not require mutual exclusion)

TM benefits

24

spcl.inf.ethz.ch

@spcl_eth

changes made by a transaction are
made visible atomically

other threads preserve either the initial or the final state, but not any
intermediate states

Note: locks enforce atomicity via mutual exclusion, while transactions
do not require mutual exclusion

TM semantics: Atomicity

25

spcl.inf.ethz.ch

@spcl_eth

Transactions run in isolation

Á while a transaction is running, effects from other transactions are not observed

ǒ as if the transaction takes a snapshot of the global state when it begins and then
operates on that snapshot

TM semantics: Isolation

26

spcl.inf.ethz.ch

@spcl_eth

Serializability

TXA

Thread 0 Thread 1

TXB

TXA

TXB
as if:
Executed Sequentially

(transactions appearserialized)
27

spcl.inf.ethz.ch

@spcl_eth

Transactional Memory is heavily inspired by database transactions

ACIDproperties in database transactions:

ǒ Atomicity

ǒ Consistency (database remains in a consistent state)

ǒ Isolation (no mutual corruption of data)

ǒ 5ǳǊŀōƛƭƛǘȅ όŜΦƎΦΣ ǘǊŀƴǎŀŎǘƛƻƴ ŜŦŦŜŎǘǎ ǿƛƭƭ ǎǳǊǾƛǾŜ ǇƻǿŜǊ ƭƻǎǎ Ҧ ǎǘƻǊŜŘ ƛƴ Řƛǎƪύ

Transactions in databases

28

spcl.inf.ethz.ch

@spcl_eth

Big lock around all atomic sections

Ágives (nearly all) desired properties, but not scalable

Ánot done in practice for obvious reasons

Keep track of operations performed by each transaction

Áconcurrency control

Ásystem ensures atomicity and isolation properties

How to implement TM?
Which are missing?

29

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA

atomic {
�]��
x = a // read a
if (x == 0) {

�]��
} else {

�]��
}

}

TXB

atomic {
�]��
a = 10 // write a
�]��

}

30

Initially: a = 0

