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How the fourth variant works

A fourth variant of the data-leaking Meltdown-Spectre security flaws in  variant 4 is referred to as a speculative store bypass. It is yet another
modern processors has been found by Microsoft and Google “wait, why didn't | think of that?" design oversight in modern out-of-order-
researchers. execution engineering. And it was found by Google Project Zero's Jann
Horn, who helped uncover the earlier Spectre and Meltdown bugs, and
Ken Johnson of Microsoft.

It hinges on the fact that when faced with a bunch of software instructions
that store data to memory, the CPU will look far ahead to see if it can
execute any other instructions out of order while the stores complete.
Writing to memory is generally slow compared to other instructions. A
modern fast CPU won't want to be held up by store operations, so it looks
ahead to find other things to do in the meantime.

If the processor core, while looking ahead in a program, finds an
instruction that loads data from memory, it will predict whether or not this
load operation is affected by any of the preceding stores. For example, if
a store is writing to memory that a later load fetches back from memary,
you'll want the store to complete first. If a load is predicted ta be safe to
run ahead of the pending stores, the processor executes it speculatively
while other parts of the chip are busy with other code.
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Bank account$calaST/

class AccountSTM {
private final Integer id,; /[ account id
private final Ref.View <Integer> balance;

AccountSTM int 1d, Int balance) {
this.id = new Integer (id);
this.balance = STM.newRe{balance);
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ldeal world: bank account using atomic keyword

void withdraw(  final Iint amount) {
// assume that there are always sufficient funds...

atomic {
int old val = balance.get ();
balance.set (old val Z amount);
}
}
void deposit(  final int amount) {
atomic {
Int old val = balance.get ();
balance.set (old val + amount);
}
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Real world: bank account 18calaSTM

void withdraw( final int amount) {
// assume that there are always sufficient funds...
STM.atomic (new Runnable() { public void run() {
int old val = balance.get ();
balance.set (old val Z amount);

0
}

void deposit(  final int amount) {
STM.atomic (new Runnable() { public void run() {
Int old val = balance.get ();
balance.set (old val + amount);

)
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GetBalancdreturn avalue)

public int getBalance() {
Int result = STM.atomic(
new Callable<Integer>() {
public Integer call() {
Int result = balance.get();
return result;

}
D;

return result;

"atomic"



Bank account transfer

static void ftransfer (final AccountSTM a,

final  AccountSTM b,
final Iint amount) {

atomic {

a. withdraw (amount);
b. deposit (amount);

}

What if account a does not have enough funds?

How can we wait until it does in order to retry the transfer?
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Bank account transfer with retry

static void ftransfer retry  (final AccountSTM a,
final  AccountSTM b,
final Iint amount) {

atomic {
If (a.balance. get () <amount)
STMretry ();
a. withdraw (amount);
b. deposit (amount);

}

retry: abort the transaction and retry when conditions change
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How does retry work?

Implementations need to track what reads/writes a transaction performed

to detect conflicts
A Typically calledead-/write -set of a transaction
A When retry is called, transaction aborts and will be retried whax of the variables

that were read change
A In our example, whea.balancds updated, the transaction will be retried
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Simplest STM Implementation

Ingredients

Threads that run transactions with thread states
A active
A aborted
A committed

ObjECtS representing state stored in MEM@HKY variables affected by a transaction)
A offering methods like a constructaead (get), write (set)
Aand copy!



v awien ETHZzirich

Clockbased STM System

Transaction A Transaction B

e — Qart read at start " pirthdate

global

clock
Transaction C 4;(95

commits
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Atomic Objects

Each transaction uses a locaad-setand a localrite-set holding all locally
read and written objects. atomic memory object

Transaction callsead --

- check if the object is in the write sét return this (new) version

- otherwise check if object's timgtamp>X (G NI} yal OGA 2y U a
aborted exception, otherwise add new copy of the object to the read set

Transaction callgrrite

- If object Is not In write set, create a copy of It in the write set

0



v awien ETHZzirich

Transaction life time

/!
read setof T

birthdate of T @ T reads X W

time
X.date Y.date Z.date

t / —

15
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Commit

A Lock all objects of reaéind write-set (in some defined order to avoid
deadlocks)

A Check that all objects in the read set provide a tstempXX 0 A NI KR |
transaction, otherwise return "abort"

A Increment and get the value T of current global clock
A Copy each element of the write set back to global memory with timestamj

A Release all locks and return "commit"
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Successful commit

~ read setof T \

birthdate of T T reads Y T reads X T commits

T writes X
(local copy!

T writes Y

X.date Y.date Z.date
(local copy!)

f ~ write setof T

17
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Aborted commit

~ read setof T \

birthdate of T T reads Y T reads X T commits ;

T writes Z
(local copy!

T writes Y

X.date Y.date Z.date
(local copy!)

f ~ write setof T

18
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Dining philosophers

5 philosophers

5 forks

each philosopher requires 2 forks to ea
s forks cannot be shared

O«

O«

O«

image source: Wikipedia

19



v awien ETHZzirich

Solution that can lead to deadlock

Philosopher:

0

0

0

think

lock left
lock right
eat

unlock right
unlock left

P, takes F, P, takes F, P, takes F, P, takes , P, takes E
M 5SIF Rt 207
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Dining Philosophers Using TM

private static class Fork {

public final Ref.View <Boolean> inUse = STMnewRef(false);
}
class PhilosopherThread extends Thread {

private final Int  meals;

private final Fork left;

private final Fork right;

public PhilosopherThread (Fork left, Fork right) {

}
public

this .left  =left;
this .right = right;

void runs§ Dz A dzZ
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Dining Philosophers Using TM

Fork[] forks = new Fork[ tableSize ]

for (int i =0; i < tableSize ; i++)
forks[ i]= new Fork();

PhilosopherThread [] threads = new PhilosopherThread |[tableSize |;

for (int 1 =0; 1 < tableSize ; |++)
threads[ i]= new PhilosopherThread (forks[ ],
forks[( i + 1) % tableSize ]);
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Dining Philosophers Using TM

class PhilosopherThread extends Thread {
A
public void run () {
for (int m= 0; m<meals; m++) {

[/ THINK
pickUpBothForks ();
/[ EAT
putDownForks ();
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Dining Philosophers Using TM

class PhilosopherThread extends Thread {
A
private  void pickUpBothForks () {
STMatomic (new Runnable() { public void run(){

If (left.inUse. get() || right.inUse. get ())
STMretry ();

left.inUse.  set (true);
right.inUse.  set (true);

[k
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Dining Philosophers Using TM

class PhilosopherThread extends Thread {
A
private  void putDownForks () {
STMatomic (new Runnable() { public void run(){

left.inUse.  set (false);
right.inUse.  set (false);

[k
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Issues with transactions

A It is not clear what are the best semantics for transactions
A Getting good performance can be challenging

A 1/0O operations (e.qg., print to screen)
Can we perform I/O operations in a transaction?
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Summary

s Locks are too hard!
s Transactional Memory tries to remove the burden from the programmer
s STM/HTM

s Remains to be seen whether it will be widely adopted in the future



v awien ETHZzirich

Additional Reading

Simon Peyton Jones,
Beautiful concurrency
http://research.microsoft.com/pubs/74063/beautiful.pdf

Dan Grossman,
The Transactional Memory / Garbage Collection Analogy
https://homes.cs.washington.edu/~djg/papers/analogy oopsla07.pdf



http://research.microsoft.com/pubs/74063/beautiful.pdf
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
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Distributed Memory
& Message Passing
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So far

Considered
AParallel / Concurrent
AForkJoin/ Threads
AOOP on Shared Memory
ALocking Lock Free / Transactional
ASemaphoreg Monitors
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Sharing State

Many of the problems of parallel/concurrent programming come from sharin:
state

I
Al2YLX SEAGE 2F f201asz Mg Lo—{ VRA G

What if we avoid sharing state?

|
\
\
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Alternatives

Functional Programming
A Immutable stated, no synchronization required

Message Passing: Isolatedutable state
A State is mutable, but not shared: Each thread/task has its private state
A Tasks cooperate via message passing



v awien ETHZzirich

Concurrent Message Passing

Programming Models
A CSP: Communicating Sequential Processes

A Actor programming model

Framework/library
A MPI (Message Passing Interface)
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Shared vs Distributed memory

| cpul| crul | cry|

Mem

| cPu| | cPyl [cry

Mem

Mem

Mem
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|solated mutable state

Mutable (private) state
Tasks exchange messages
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Example: Shared state counting

5.9 9.

inc()

|nc0 inc() inc()
P P / get()
\ 4

counter

Vd A o Vd A o
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Isolated mutability: counting

| [ [

Local ¢ Local ¢ Local c Local cn
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Isolated mutability: accessing count

.get()

5% >
L]

Local ¢ Local c Local c Local c
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Rethinking managing state

Bank account _
i Sequential programming

s Single balance

i Parallel programming: sharing state
s Single balance + protection

i Parallel programming: distributing state
s Each thread has a local balance (a budget)
s Threads exchange amounts at coarse granularity
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Distributed Bank account

Total balance: 100 + 300 + 150 = 550

A Each task can operate independently
A And communicate with other tasks only when needed

A This lecture: via messaging

100 300 150
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Synchronous vs Asynchronous messages

Synchronous:
i sender blocks until message is received

© Can Stock Photo

Asynchronous:
i sender does not block (firand-forget)

i placed into a buffer for receiver to get
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The Actor Modei

Actor = Computational agent thataps Actor
communicationto

A a finite set of communications sent to other actors l

(messages)
A a new behavior (state)

A a finite set of new actors created (dynamic
reconfigurability)

A Undefined global ordering
A Asynchronous Message Passing
A Invented by Carl Hewitt 1973

*GulAgha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (19&3)niversal Modular Actor Formalism for Artificial Intelligend€Al.
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The Actor Model

Actor model provides a dynamic interconnection topology

A dynamically configure the graph during runtime (add channels)
A dynamically allocate resources

An actor sends messages to other actors using "direct naming", without
iIndirection via port / channel / gueue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in
frameworks such as Akka (for Scala and Java)
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Eventdriven programming model

Typically actors react to messages
A Eventdriven model

A program is written as a set of event handlers for events
(events can be seen as received messages)

Example: Gra
A dza S NJ
A dza S NJ
A X

INBaasSa

INBaasSa

ohical User Interface

h'Y
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- module(pi .
Example: Erlang “expori{statt, pngi2, pong/o. [ - l

ping(0, Pong_Node) ->

i i o formatpig fished-rt 1) ERLANG
Functional Programming Language
A code might look unconventional at first p‘”g(goigf‘g;ﬂgfﬁode; —
Developed by Ericsson for distributed fault R
. . io:format("Ping received pong~n", [])
tolerant applications end,
P . . ping(N - 1, Pong_Node).
A 1f no state Is shared, recovering from ol >
errors becomes much easier receive

io:format("Pong finished~n", []);
{ping, Ping_PID} ->
io:format("Pong received ping~n", []),

Open source Ping_PID ! pong,
pong()
Concurrent, follows the actor model end.

start(Ping_Node) ->
register(pong, spawn(pingpong, pong, [])),
spawn(Ping_Node, pingpong, ping, [3, node()]).
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Erlang example

start () ->

Pid = spawn(fun() -> hello() end),

Pid ! hello,
Pid ! bye.
hello () ->
receive
hello ->
o : fwrite ("Helloworld \n"),
hello ();
bye ->
o : fwrite ("Bye cruelworld \n"),
ok
end.

new task (actor) that will execute the hello function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

Messages sent to a task are putin a
mailbox

Receivereads the first message in the
mailbox, which is matched against
patterns (similar to a switch statement)

Eventdriven programming:
code is structured as reactions to events
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Actor example: distributor

s Forward received messages to a set of nodes in a roohih fashion

OOOO— 62,
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Actor example: distributor

State:
i an array of actors

i the array index of the next actor to forward a message

Recelve: . X X .
iYSaal3sSa M F2N¥I NR YSaal3aS | yR
i control commands (e.g., add/remove actors)
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Actor example: serializer

e 0000

ordered
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Actor example: serializer

State:
i a sorted list of items we have received

i the last item we forwarded

last item sorted list of pending items

(2] w] ] ]
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Actor example: serializer

Recelve: If we receive an item thatlasgerthan the last item plus one:
i add It to the sorted list

old state: ‘ 12 ‘ 14 ‘ 16 ‘ 17 ‘

Examplereceive 13 l

new state: ‘ 12 ‘ 13 ‘ 14 ‘ 16 ‘ 17 ‘
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Actor example: serializer

s Receive: If we receive an item thaeigual tothe last item plus one:
i send the received item plus all consecutive items from the list

i reset the last item

old state: ‘ 12 ‘ 13 ‘ 14 ‘ 16 ‘ 17 ‘

Example receive 11 l SEN ‘ 14‘ 13 ‘ 12 ‘ 11 ‘

new state: ‘ 16 ‘ 17 ‘
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CommunicatingsequentialProcesse$1978, 1985)

Sir Charles Antony Richard Hoafeka C.A.R. / Tony Hoare)
Formallanguage defining a process algebra for concurrent syst

Operators seq (sequential) and par (parallel) for the hierarchical compositior
processes.

Synchronisation and Communication between parallel processes with Mess
Passing.

A Symbolic channels between sender and receiver
A Read and write requiresr@ndezvouZsynchronous!)
CSP walrst implemented in Occam.
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CSP: Indirect Naming

A Many message passing architectures (such as CSP) include an intermedi
entity (port / channe) to address send destination

A Process issuing send() specifies the port to which the message is sent

A Process issuing receive() specifies a port number and waits for the first
message that arrives at the port

proces/

/
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CSP Example (from Hoare's seminal Paper)

Conway's Problem
A Write a program that transforms a series of cards withcB@racter columns
In a series of printing lines with 125 characters each. Replace each "**" b

Il/\ll

A Separation into processes (Threads) . - 5
R par C par P
, ] ] . W
A R: Reading process reading@taracter records o —— Channel d

A C: Converting process converting "**" into ""
A P:Printingprocess: write records with 125 characters
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CSP Example (from Hoare's seminal Paper)

[west :: DISASSEMBLEK|[.: SQUASH east :: ASSEMBLE]

SQUASH
X
*[c.character; west?&
[c # asterisld east!c
|c = asteriskhA west?c;
C # asterisld east!asterisk; east!c
c = asterisk;AA eastlupward arrow

] west SQUASH east

Repetition of guarded
command

Guarded receive

Blocking send

Guarded alternatives
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OCCAM
First programming language to implement CSP (1983)

ALT
countl <100 & c1 ? data

SEQ
countl :=countl + 1
merged ! data
count2 < 100 & c2 ? data
SEQ
count?2 :=count2 + 1
merged ! data
status ? request
SEQ
out ! countl
out ! count2
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Go programming language

Concurrent programming language from Google

Language support for:

i Lightweight tasks (called goroutines)

i Typed channels for task communications
s channels are synchronous (orbuffered by default
s support for asynchronous (buffered) channels

Inspired by CSP
Language roots in Algol Family: Pascal, Modula, Oberon Ntk@fuswWirth, ETH]

[One of the inventors, Robe@Griesemer PhD from ETH]
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Go example

func main() { func hello (msgs chan string
done chan bool ) {

msgs := makg chan string )

done := makeg chan bool) for {
msg := < - msgs
go hello (msgs done); fmt. Printin ("Got:" , msg
msgs <- "Hello" if msg == "bye" {
msgs <- "bye" break
}
ok :=< -done }
fmt. Println  ("Done:" , ok); done <- true ;
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Go example

func main() { func hello (msgs chan string
done chan bool ) {

msgs := makg chan string )

done := makeg chan bool) for {
msg = < - msgs
go hello (msgs, done); fmt. Printin ("Got:" , msg)
§ ) Create two channels: _ o
msgs <- "Hello smsgs for strings If msg == "bye" {
msgs <- "bye sdone: forbooleanvalues } break
ok :=< -done }
fmt. Println  ("Done:" , ok); done <- true ;
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Go example
func main() { func hello (msgs chan string
done chan bool ) {
msgs := makg chan string )
done := makeg chan bool) for {
msg = < - msgs
go hello (msgs, done); fmt. Printin ("Got:" , msg)
Create a new taslgo6routine),
msgs <- "Hello" that will execute function If  msg== "bye" {
msgs <- "bye" hello with the given break
arguments }
ok :=< -done }
fmt. Println  ("Done:" , ok); done <- true ;



Go example

func main() {

msgs := makg chan string )
done .= makd chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok :=< -done

fmt. Printin  ("Done:" , ok);

25s ETH zirich

Hello takes two channels as
arguments for communication

func hello (msgs chan string
done chan bool ) {

for {
msg = < - msgs
fmt. Printin ("Got:" , msg)
if msg == "bye" {
break
}
}

done <- true :
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Go example

func main() { func hello (msgs chan string
done chan bool ) {

msgs := makg chan string )

done := makeg chan bool) for {
msg = < - msgs
go hello (msgs, done);  \write arguments tansgs fmt. Printin ("Got:" , msg)
channel _

msgs <- "Hello" if msg == "bye" {
msgs <- "bye" break

Read result via done channel }
ok ;=< -done }
fmt. Println  ("Done:" , ok); done <- true ;
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Q: what will happen Iin this program?

func t(in chan string ,done chan bool){

m:=< -in // receive from in channel
fmt. Printin ("Got message:" , m); // print received message
done <- true // send true to done channel
}
func main() {
c = makeg chan string ) // create a string channel
done := makd chan bool) // create a boolean channel

go t(c,done) //spawn goroutine

ok := < -done // receive from done channel ;‘A\:t I o
fmt. Printin  ("Got ok:" , ok); //print ok ata etr_ror. a
c<- "Hello" // send hello to channel ¢ goroutinés  aré

asleep - deadlock!
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Example: Concurrent prime sieve

Each station removes multiples of the first element received and passes on
remaining elements to the next station

...98765432 ...9753 .. 15 o 7
>

G F, » kK » K >
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Concurrent prime sieve

func Generate(ch chan< - int){ func Filter(in < - chan int, out chan< - int, prime int) {

fori=2::it+{ for{ | | |
;=< -in [/l Receive value from 'in".

\ ch<- i if i%prime 1= 0 {
out< - i// Send'i"to 'out'.
) G }
}
} I:prime
func main() {
ch := make(chan int)
go Generate(ch)
fori:=0;i< 10; i++{ G ..765432_ ..753 [ ---75> - o ! .
2 3 5

prime :=< -ch
fmt.Printin(prime)

chl := make(chan int)
go Filter(ch, chl, prime)
ch =chl

source code from golang.org
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Message Passing Interface (MPI)

SCIENTIFIC
ANLD
ENGINEERING

*UTATION

Using Advanced MPI

Modern Features of the

Message-Passing Interface

William Gropp
Torsten Hoefler
Rajeev Thakur

Ewing Lusk




