
spcl.inf.ethz.ch

@spcl_eth

TIMO SCHNEIDER(SUBST. TORSTENHOEFLER)

Parallel Programming

Finish STM & Distributed Memory
Programming: Actors, CSP, and MPI

spcl.inf.ethz.ch

@spcl_eth

class AccountSTM {
private final Integer id; // account id
private final Ref.View <Integer> balance;

AccountSTM(int id, int balance) {
this.id = new Integer (id);
this.balance = STM.newRef(balance);

}

}

Bank account (ScalaSTM)

2

spcl.inf.ethz.ch

@spcl_eth

void withdraw(final int amount) {
// assume that there are always sufficient funds...
atomic {

int old_val = balance.get ();
balance.set (old_val Ƶamount);

}
}

void deposit(final int amount) {
atomic {

int old_val = balance.get ();
balance.set (old_val + amount);

}
}

Ideal world: bank account using atomic keyword

3

spcl.inf.ethz.ch

@spcl_eth

void withdraw(final int amount) {
// assume that there are always sufficient funds...
STM.atomic (new Runnable() { public void run() {

int old_val = balance.get ();
balance.set (old_val Ƶamount);

}});
}

void deposit(final int amount) {
STM.atomic (new Runnable() { public void run() {

int old_val = balance.get ();
balance.set (old_val + amount);

}});
}

4

Real world: bank account in ScalaSTM

spcl.inf.ethz.ch

@spcl_eth

public int getBalance() {

int result = STM.atomic(

new Callable<Integer>() {

public Integer call() {

int result = balance.get();

return result;

}

});

return result;

}

GetBalance(return a value)
"a

to
m

ic
"

5

spcl.inf.ethz.ch

@spcl_eth

What if account a does not have enough funds?

How can we wait until it does in order to retry the transfer?

ƭƻŎƪǎ Ҧ ŎƻƴŘƛǘƛƻƴŀƭ ǾŀǊƛŀōƭŜǎ

¢a Ҧ ǊŜǘǊȅ

static void transfer (final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
a. withdraw (amount);
b. deposit (amount);

}
}

Bank account transfer

6

spcl.inf.ethz.ch

@spcl_eth

static void transfer_retry (final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance. get () < amount)

STM.retry ();
a. withdraw (amount);
b. deposit (amount);

}
}

retry: abort the transaction and retry when conditions change

Bank account transfer with retry

7

static void transfer_retry (final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance. get () < amount)

STM.retry ();
a. withdraw (amount);
b. deposit (amount);

}
}

spcl.inf.ethz.ch

@spcl_eth

Implementations need to track what reads/writes a transaction performed
to detect conflicts

ÁTypically called read-/write -set of a transaction

ÁWhen retry is called, transaction aborts and will be retried when any of the variables
that were read, change

Á In our example, when a.balanceis updated, the transaction will be retried

How does retry work?

8

spcl.inf.ethz.ch

@spcl_eth

Ingredients

Threads that run transactions with thread states
Áactive

Áaborted

Ácommitted

Objects representing state stored in memory (the variables affected by a transaction)

Áoffering methods like a constructor, read(get), write (set)

Áand copy!

Simplest STM Implementation

12

spcl.inf.ethz.ch

@spcl_eth

Clock-based STM System

global
clock

Transaction A
birthdate

Transaction B
birthdate

Transaction C
commits

increases

read at start read at start

13

spcl.inf.ethz.ch

@spcl_eth

Each transaction uses a local read-setand a local write-setholding all locally
read and written objects.

Transaction calls read

- check if the object is in the write set Ą return this (new) version

- otherwise check if object's time stampҖ ǘǊŀƴǎŀŎǘƛƻƴϥǎ ōƛǊǘƘŘŀǘŜΣ ƛŦ ƴƻǘ ǘƘǊƻǿ
aborted exception, otherwise add new copy of the object to the read set

Transaction calls write

- if object is not in write set, create a copy of it in the write set

Atomic Objects

atomic memory object

version
reference

time
stamp

14

spcl.inf.ethz.ch

@spcl_eth

Transaction life time

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X T reads Z

read set of T

15

spcl.inf.ethz.ch

@spcl_eth

ÁLock all objects of read- and write-set (in some defined order to avoid
deadlocks)

ÁCheck that all objects in the read set provide a time stampҖ ōƛǊǘƘŘŀǘŜ ƻŦ ǘƘŜ
transaction, otherwise return "abort"

ÁIncrement and get the value T of current global clock

ÁCopy each element of the write set back to global memory with timestamp T

ÁRelease all locks and return "commit"

Commit

16

spcl.inf.ethz.ch

@spcl_eth

Successful commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes X
(local copy!)

T commits

read set of T

write set of T

17

spcl.inf.ethz.ch

@spcl_eth

Aborted commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes Z
(local copy!)

T commits

read set of T

18

write set of T

spcl.inf.ethz.ch

@spcl_eth

ǒ 5 philosophers

ǒ 5 forks

ǒ each philosopher requires 2 forks to eat

ǒ forks cannot be shared

Dining philosophers

image source: Wikipedia

19

spcl.inf.ethz.ch

@spcl_eth

Philosopher:

ǒ think

ǒ lock left

ǒ lock right

ǒ eat

ǒ unlock right

ǒ unlock left

Solution that can lead to deadlock

P1 takes F1, P2 takes F2, P3 takes F3, P4 takes F4, P5 takes F5
Ҧ 5ŜŀŘƭƻŎƪ

20

spcl.inf.ethz.ch

@spcl_eth

private static class Fork {
public final Ref.View <Boolean> inUse = STM.newRef(false);

}

class PhilosopherThread extends Thread {
private final int meals;
private final Fork left;
private final Fork right;

public PhilosopherThread (Fork left, Fork right) {
this .left = left;
this .right = right;

}

public void runƽƾ ǅ ƛ ǆ
}

21

Dining Philosophers Using TM

spcl.inf.ethz.ch

@spcl_eth

Fork[] forks = new Fork[tableSize];

for (int i = 0; i < tableSize ; i ++)
forks[i] = new Fork ();

PhilosopherThread [] threads = new PhilosopherThread [tableSize];

for (int i = 0; i < tableSize ; i ++)
threads[i] = new PhilosopherThread (forks[i],

forks[(i + 1) % tableSize]);

Dining Philosophers Using TM

22

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
ƛ

public void run () {
for (int m = 0; m < meals; m++) {

// THINK
pickUpBothForks ();
// EAT
putDownForks ();

}
}

ƛ
}

Dining Philosophers Using TM

23

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
ƛ

private void pickUpBothForks () {
STM.atomic (new Runnable() { public void run () {

if (left.inUse. get () || right.inUse. get ())
STM.retry ();

left.inUse. set (true);
right.inUse. set (true);

}});
}

ƛ
}

Dining Philosophers Using TM

24

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
ƛ

private void putDownForks () {
STM.atomic (new Runnable () { public void run () {

left.inUse. set (false);
right.inUse. set (false);

}});

}
ƛ

}

Dining Philosophers Using TM

25

spcl.inf.ethz.ch

@spcl_eth

ÁIt is not clear what are the best semantics for transactions

ÁGetting good performance can be challenging

ÁI/O operations (e.g., print to screen)
Can we perform I/O operations in a transaction?

Issues with transactions

26

spcl.inf.ethz.ch

@spcl_eth

ǒ Locks are too hard!

ǒ Transactional Memory tries to remove the burden from the programmer

ǒ STM / HTM

ǒ Remains to be seen whether it will be widely adopted in the future

Summary

27

spcl.inf.ethz.ch

@spcl_eth

Simon Peyton Jones,
Beautiful concurrency
http://research.microsoft.com/pubs/74063/beautiful.pdf

Dan Grossman,
The Transactional Memory / Garbage Collection Analogy
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf

Additional Reading

28

http://research.microsoft.com/pubs/74063/beautiful.pdf
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf

spcl.inf.ethz.ch

@spcl_eth

Distributed Memory
& Message Passing

29

spcl.inf.ethz.ch

@spcl_eth

Considered

ÁParallel / Concurrent

ÁFork-Join/ Threads

ÁOOP on Shared Memory

ÁLocking/ Lock Free / Transactional

ÁSemaphores/ Monitors

30

So far

spcl.inf.ethz.ch

@spcl_eth

Many of the problems of parallel/concurrent programming come from sharing
state

Á/ƻƳǇƭŜȄƛǘȅ ƻŦ ƭƻŎƪǎΣ ǊŀŎŜ ŎƻƴŘƛǘƛƻƴǎΣ ΧΦ

What if we avoid sharing state?

31

Sharing State

spcl.inf.ethz.ch

@spcl_eth

Functional Programming

ÁImmutable state Ą no synchronization required

Message Passing: Isolatedmutable state

ÁState is mutable, but not shared: Each thread/task has its private state

ÁTasks cooperate via message passing

32

Alternatives

spcl.inf.ethz.ch

@spcl_eth

Programming Models

ÁCSP: Communicating Sequential Processes

ÁActor programming model

Framework/library

ÁMPI (Message Passing Interface)

33

Concurrent Message Passing

spcl.inf.ethz.ch

@spcl_eth

34

Shared vs Distributed memory

CPU CPU CPU

Mem

CPU CPU CPU

Mem Mem Mem

Interconnect Network

spcl.inf.ethz.ch

@spcl_eth

35

Isolated mutable state

state state

state

Mutable (private) state
Tasks exchange messages

spcl.inf.ethz.ch

@spcl_eth

36

Example: Shared state counting

counter

.inc()

.get()
.inc()
.get()

.inc()

.get()

.inc()

.get()

Ҧ ǎƘŀǊŜŘ ǎǘŀǘŜ Ƴǳǎǘ ōŜ ǇǊƻǘŜŎǘŜŘ όƭƻŎƪκŀǘƻƳƛŎ ŎƻǳƴǘŜǊύ

spcl.inf.ethz.ch

@spcl_eth

37

Isolated mutability: counting

.inc()

Local cnt

.inc()

Local cnt

.inc()

Local cnt

.inc()

Local cnt

spcl.inf.ethz.ch

@spcl_eth

38

Isolated mutability: accessing count

Local cnt Local cnt Local cnt

.get()

Local cnt

spcl.inf.ethz.ch

@spcl_eth

Bank account
ïSequential programming

ǒ Single balance

ïParallel programming: sharing state

ǒ Single balance + protection

ïParallel programming: distributing state

ǒ Each thread has a local balance (a budget)

ǒ Threads exchange amounts at coarse granularity

39

Rethinking managing state

spcl.inf.ethz.ch

@spcl_eth

Total balance: 100 + 300 + 150 = 550

ÁEach task can operate independently

ÁAnd communicate with other tasks only when needed
ÁThis lecture: via messaging

40

Distributed Bank account

100 300 150

spcl.inf.ethz.ch

@spcl_eth

Synchronous:
ïsender blocks until message is received

Asynchronous:
ïsender does not block (fire-and-forget)

ïplaced into a buffer for receiver to get

41

Synchronous vs Asynchronous messages

spcl.inf.ethz.ch

@spcl_eth

Actor = Computational agent that maps

communicationto
Áa finite set of communications sent to other actors

(messages)

Áa new behavior (state)

Áa finite set of new actors created (dynamic
reconfigurability)

ÁUndefined global ordering

ÁAsynchronous Message Passing

ÁInvented by Carl Hewitt 1973**

42

The Actor Model*

*GulAgha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

Actor

Thread

State

Mailbox

spcl.inf.ethz.ch

@spcl_eth

Actor model provides a dynamic interconnection topology

Ádynamically configure the graph during runtime (add channels)

Ádynamically allocate resources

An actor sends messages to other actors using "direct naming", without
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in
frameworks such as Akka (for Scala and Java)

43

The Actor Model

spcl.inf.ethz.ch

@spcl_eth

Typically actors react to messages

ÁEvent-driven model

A program is written as a set of event handlers for events
(events can be seen as received messages)

Example: Graphical User Interface

ÁǳǎŜǊ ǇǊŜǎǎŜǎ hY ōǳǘǘƻƴ Ҧ Χ

ÁǳǎŜǊ ǇǊŜǎǎŜǎ /ŀƴŎŜƭ ōǳǘǘƻƴ Ҧ Χ

ÁΧ

44

Event-driven programming model

spcl.inf.ethz.ch

@spcl_eth

Functional Programming Language

Á code might look unconventional at first

Developed by Ericsson for distributed fault-
tolerant applications

Á if no state is shared, recovering from
errors becomes much easier

Open source

Concurrent, follows the actor model

45

Example: Erlang
- module(pingpong).
- export([start/1, ping/2, pong/0]).

ping(0, Pong_Node) - >
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) - >
{pong, Pong_Node} ! {ping, self()},
receive

pong - >
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() - >
receive

finished - >
io:format("Pong finished~n", []);

{ping, Ping_PID} - >
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) - >
register(pong, spawn(pingpong, pong, [])),
spawn(Ping_Node, pingpong, ping, [3, node()]).

spcl.inf.ethz.ch

@spcl_eth

start () - >
Pid = spawn(fun() - > hello() end),

Pid ! hello,
Pid ! bye.

hello () - >
receive

hello - >
io : fwrite ("Hello world \ n"),

hello ();
bye - >

io : fwrite ("Bye cruel world \ n"),
ok

end.

46

Erlang example

Messages sent to a task are put in a
mailbox

Receivereads the first message in the
mailbox, which is matched against
patterns (similar to a switch statement)

Event-driven programming:
code is structured as reactions to events

new task (actor) that will execute the hello function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

spcl.inf.ethz.ch

@spcl_eth

ǒ Forward received messages to a set of nodes in a round-robin fashion

47

Actor example: distributor

1

1

223

3

4

4

spcl.inf.ethz.ch

@spcl_eth

State:
ïan array of actors

ïthe array index of the next actor to forward a message

Receive:
ïƳŜǎǎŀƎŜǎ Ҧ ŦƻǊǿŀǊŘ ƳŜǎǎŀƎŜ ŀƴŘ ƛƴŎǊŜŀǎŜ ƛƴŘŜȄ όƳƻŘύ

ïcontrol commands (e.g., add/remove actors)

48

Actor example: distributor

spcl.inf.ethz.ch

@spcl_eth

49

Actor example: serializer

1

1

2 2 3

3

4

4

serializer 1234

unordered

ordered

spcl.inf.ethz.ch

@spcl_eth

State:
ïa sorted list of items we have received

ïthe last item we forwarded

50

Actor example: serializer

10 12 14 16 17

last item sorted list of pending items

spcl.inf.ethz.ch

@spcl_eth

Receive: If we receive an item that is largerthan the last item plus one:
ïadd it to the sorted list

51

Actor example: serializer

10 12 14 16 17

10 12 13 14 16 17

Example: receive 13

old state:

new state:

spcl.inf.ethz.ch

@spcl_eth

ǒ Receive: If we receive an item that is equal tothe last item plus one:
ïsend the received item plus all consecutive items from the list

ïreset the last item

52

Actor example: serializer

10

14 16 17

Example: receive 11
send

1112

12 13 14 16 17

14 13

old state:

new state:

spcl.inf.ethz.ch

@spcl_eth

Sir Charles Antony Richard Hoare (aka C.A.R. / Tony Hoare)

Formallanguage defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical composition of
processes.

Synchronisation and Communication between parallel processes with Message
Passing.

ÁSymbolic channels between sender and receiver

ÁRead and write requires a rendezvouz(synchronous!)

CSP was first implemented in Occam.

55

Communicating SequentialProcesses(1978, 1985)

spcl.inf.ethz.ch

@spcl_eth

ÁMany message passing architectures (such as CSP) include an intermediary
entity (port / channel) to address send destination

ÁProcess issuing send() specifies the port to which the message is sent

ÁProcess issuing receive() specifies a port number and waits for the first
message that arrives at the port

56

CSP: Indirect Naming

process

spcl.inf.ethz.ch

@spcl_eth

Conway's Problem

ÁWrite a program that transforms a series of cards with 80-character columns
in a series of printing lines with 125 characters each. Replace each "**" by
"^"

ÁSeparation into processes (Threads)
R par C par P
ÁR: Reading process reading 80-character records

ÁC: Converting process converting "**" into "^"

ÁP: Printingprocess: write records with 125 characters

57

CSP Example (from Hoare's seminal Paper)

C PR

Channel c Channel d
c!x c?x d!x d?x

spcl.inf.ethz.ch

@spcl_eth

[west :: DISASSEMBLE] || X :: SQUASH || east :: ASSEMBLE]

SQUASH
X ::
*[c:character; west?c Ą

[c # asterisk Ą east!c
|c = asterisk Ąwest?c;

[c # asterisk Ą east!asterisk; east!c
|c = asterisk Ą east!upward arrow
]

]
]

58

CSP Example (from Hoare's seminal Paper)

Repetition of guarded
command

Guarded receive

Blocking send

Guarded alternatives

SQUASHwest east

spcl.inf.ethz.ch

@spcl_eth

First programming language to implement CSP (1983)

ALT
count1 < 100 & c1 ? data
SEQ
count1 := count1 + 1
merged ! data

count2 < 100 & c2 ? data
SEQ
count2 := count2 + 1
merged ! data

status ? request
SEQ
out ! count1
out ! count2

59

OCCAM

spcl.inf.ethz.ch

@spcl_eth

Concurrent programming language from Google

Language support for:

ïLightweight tasks (called goroutines)

ïTyped channels for task communications

ǒ channels are synchronous (or unbuffered) by default

ǒ support for asynchronous (buffered) channels

Inspired by CSP
Language roots in Algol Family: Pascal, Modula, Oberon [Prof. NiklausWirth, ETH]
[One of the inventors, Robert Griesemer: PhD from ETH]

60

Go programming language

spcl.inf.ethz.ch

@spcl_eth

func main() {

msgs := make(chan string)
done := make(chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := < - done

fmt. Println ("Done:" , ok);
}

func hello (msgs chan string ,
done chan bool) {

for {
msg := < - msgs
fmt. Println ("Got:" , msg)

if msg == "bye" {
break

}
}

done < - true ;
}

61

Go example

spcl.inf.ethz.ch

@spcl_eth

func main() {

msgs := make(chan string)
done := make(chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := < - done

fmt. Println ("Done:" , ok);
}

func hello (msgs chan string ,
done chan bool) {

for {
msg := < - msgs
fmt. Println ("Got:" , msg)

if msg == "bye" {
break

}
}

done < - true ;
}

62

Go example

Create two channels:
ǒmsgs: for strings
ǒdone: for booleanvalues

spcl.inf.ethz.ch

@spcl_eth

func main() {

msgs := make(chan string)
done := make(chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := < - done

fmt. Println ("Done:" , ok);
}

func hello (msgs chan string ,
done chan bool) {

for {
msg := < - msgs
fmt. Println ("Got:" , msg)

if msg == "bye" {
break

}
}

done < - true ;
}

63

Go example

Create a new task (goroutine),
that will execute function
hello with the given
arguments

spcl.inf.ethz.ch

@spcl_eth

func main() {

msgs := make(chan string)
done := make(chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := < - done

fmt. Println ("Done:" , ok);
}

func hello (msgs chan string ,
done chan bool) {

for {
msg := < - msgs
fmt. Println ("Got:" , msg)

if msg == "bye" {
break

}
}

done < - true ;
}

64

Go example
Hello takes two channels as
arguments for communication

spcl.inf.ethz.ch

@spcl_eth

func main() {

msgs := make(chan string)
done := make(chan bool)

go hello (msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := < - done

fmt. Println ("Done:" , ok);
}

func hello (msgs chan string ,
done chan bool) {

for {
msg := < - msgs
fmt. Println ("Got:" , msg)

if msg == "bye" {
break

}
}

done < - true ;
}

65

Go example

Write arguments to msgs
channel

Read result via done channel

spcl.inf.ethz.ch

@spcl_eth

func t (in chan string , done chan bool) {
m := < - in // receive from in channel
fmt. Println ("Got message:" , m); // print received message
done < - true // send true to done channel

}

func main() {
c := make(chan string) // create a string channel
done := make(chan bool) // create a boolean channel

go t (c,done) // spawn goroutine

ok := < - done // receive from done channel
fmt. Println ("Got ok:" , ok); // print ok
c < - "Hello" // send hello to channel c

}

66

Q: what will happen in this program?

A:
fatal error: all
goroutines are
asleep - deadlock!

spcl.inf.ethz.ch

@spcl_eth

Each station removes multiples of the first element received and passes on the
remaining elements to the next station

67

Example: Concurrent prime sieve

G F2 F3 F5

... 9 8 7 6 5 4 3 2 9 7 5 3 ... 7 5 ... 7

spcl.inf.ethz.ch

@spcl_eth

func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := < - ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

68

Concurrent prime sieve

source code from golang.org

func Generate(ch chan< - int) {

for i := 2; ; i++ {

ch < - i

}

}

func Filter(in < - chan int, out chan< - int, prime int) {

for {

i := < - in // Receive value from 'in'.

if i%prime != 0 {

out < - i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 7 5 3 ... 7 5 ... 7

G
Fprime

spcl.inf.ethz.ch

@spcl_eth

Message Passing Interface (MPI)

71

