
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Message Passing & Parallel
Sorting (A taste of parallel
algorithms!)

spcl.inf.ethz.ch

@spcl_eth

 Transactional memory
 Motivation (locks are bad, wait-/lock-free is hard)

 Concepts (Atomicity, Consistency, Isolation – ACI(D))

 Implementation options (keep track of read and write sets)

 Example: dining philosophers

 Distributed memory
 Isolation of state – big simplification

 Event-driven messaging/Actors (example: Erlang)

 CSP-style (example: Go)

2

Last week

spcl.inf.ethz.ch

@spcl_eth

 Finish Go

 Message Passing Interface
 Standard library for high-performance parallel programming

 Processes, communicators, collectives – concepts of distributed memory programming

 Matching, deadlocks – potential pitfalls

 A primer on parallel algorithms
 Parallel sorting

 Sorting with fixed structures – sorting networks

3

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

Each station removes multiples of the first element received and passes on
the remaining elements to the next station

4

Example: Concurrent prime sieve

G F2 F3 F5

... 9 8 7 6 5 4 3 2 9 7 5 3 ... 7 5 ... 7

spcl.inf.ethz.ch

@spcl_eth

func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := <-ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

5

Concurrent prime sieve

source code from golang.org

func Generate(ch chan<- int) {

for i := 2; ; i++ {

ch <- i

}

}

func Filter(in <-chan int, out chan<- int, prime int) {

for {

i := <-in // Receive value from 'in'.

if i%prime != 0 {

out <- i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 7 5 3 ... 7 5 ... 7

G
Fprime

spcl.inf.ethz.ch

@spcl_eth

Message Passing Interface (MPI)

8

spcl.inf.ethz.ch

@spcl_eth

Message passing libraries:

 PVM (Parallel Virtual Machines) 1980s

 MPI (Message Passing Interface) 1990s

MPI = Standard API

• Hides Software/Hardware details

• Portable, flexible

• Implemented as a library

9

Message Passing Interface (MPI)

Program

MPI library

Standard
TCP/IP

Standard
Network

HW

Specialized
Driver

Custom
Network

HW

spcl.inf.ethz.ch

@spcl_eth

 MPI processes can be collected into groups
 Each group can have multiple colors (some times called context)

 Group + color == communicator (it is like a name for the group)

 When an MPI application starts, the group of all processes is initially given a predefined
name called MPI_COMM_WORLD
 The same group can have many names, but simple programs do not have to worry about multiple names

 A process is identified by a unique number within each communicator,
called rank
 For two different communicators, the same process can have two different ranks: so the

meaning of a “rank” is only defined when you specify the communicator

Process Identification

spcl.inf.ethz.ch

@spcl_eth

 Defines the communication domain of a communication operation: set of
processes that are allowed to communicate with each other.

 Initially all processes are in the communicator MPI_COMM_WORLD.

 The rank of processes are associated with (and unique within) a
communicator, numbered from 0 to n-1

11

MPI Communicators

P0 P1 P2 P3

P0 P1 P2 P3

c1 c2 c3

MPI_COMM_WORLD

spcl.inf.ethz.ch

@spcl_eth

Communicators

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, same ranks, but
different “aliases”)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

0 1 2 3

4 5 6 7

2 3

4 5

0 1

6 7

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools

Simple programs typically only use the predefined communicator MPI_COMM_WORLD

(which is sometimes considered bad practice because of modularity issues)

mpiexec -np 16 ./test

spcl.inf.ethz.ch

@spcl_eth

Processes are identified by nonnegative integers, called ranks

p processes are numbered 0, 1, 2, .. p-1

13

Process Ranks

public static void main(String args []) throws Exception {
MPI.Init(args);
// Get total number of processes (p)
int size = MPI.COMM_WORLD.Size();
// Get rank of current process (in [0..p-1])
int rank = MPI.COMM_WORLD.Rank();
MPI.Finalize();

}

spcl.inf.ethz.ch

@spcl_eth

Single Program

Multiple Data
(Multiple Instances)

14

SPMD

if (rank == 0)
do this

else
do that

if (rank == 0)
do this

else
do that

P0

if (rank == 0)
do this

else
do that

P1

if (rank == 0)
do this

else
do that

P2

if (rank == 0)
do this

else
do that

P3

we compile
one program

the if-else
makes it

SPMD

spcl.inf.ethz.ch

@spcl_eth

void Comm.Send(communicator

Object buf, pointer to data to be sent

int offset,

int count, number of items to be sent

Datatype datatype, data type of items, must be explicitely specified

int dest, destination process id

int tag data id tag

)

15

Communication

int int int int int int

offset

count * sizeof(int)
buf array

from MPJ Spec

spcl.inf.ethz.ch

@spcl_eth

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

8 19 23 35 3045 67 1 3 5 13 24

sort in parallel
~2* (N/2 log N/2)

1 3 5 8 6713 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0
merge in O(N)

send in O(N)

send in O(N)

spcl.inf.ethz.ch

@spcl_eth

network

 Communicating processes may need to send several messages between
each other.

 Message tag: differentiate between different messages being sent.

17

Message tags

P0 P1

msg 1

msg 2

msg 3

spcl.inf.ethz.ch

@spcl_eth

18

Message matching

q r

sender
communicator

sender tag dest = rSend

receiver
communicator

receiver tag source = qReceive

spcl.inf.ethz.ch

@spcl_eth

A receiver can get a message without knowing:
 the amount of data in the message,

 the sender of the message,

 or the tag of the message.

19

Receiving messages

MPI_ANY_TAG

MPI_ANY_SOURCE

void Comm.Recv(communicator

Object buf, pointer to the buffer to receive to

int offset,

int count, number of items to be received

Datatype datatype, data type of items, must be explicitely specified

int src, source process id or MPI_ANY_SOURCE

int tag data id tag or MPI_ANY_TAG

)

spcl.inf.ethz.ch

@spcl_eth

Synchronous send (Ssend)

• waits until complete message can be accepted by the receiving process
before completing the send

Synchronous receive (Recv)

• waits until expected message arrives

Synchronous routines can perform two actions

• transfer data

• synchronize processes

20

Synchronous Message Passing

P R

send

ready

spcl.inf.ethz.ch

@spcl_eth

Send does not wait for actions to complete before returning

• requires local storage for messages
sometimes explicit (programmer needs to care)

sometimes implicit (transparent to the programmer)

In general

• no synchronisation

• allows local progress

21

Asynchronous Message Passing

S R

spcl.inf.ethz.ch

@spcl_eth

Blocking: return after local actions are complete, though the message transfer
may not have been completed

Non-blocking: return immediately

• assumes that data storage to be used for transfer is not modified by
subsequent statements until transfer complete

22

Blocking / nonblocking

S R

spcl.inf.ethz.ch

@spcl_eth

A nonblocking communication example

P0

P1

(Full) Blocking
Communication

P0

P1

(Streaming) Non-blocking
Communication

Compute data

Compute data

spcl.inf.ethz.ch

@spcl_eth

Synchronous / Asynchronous

 about communication between sender and receiver

Blocking / Nonblocking

 about local handling of data to be sent / received

24

Synchronous / asynchronous vs. blocking / nonblocking

spcl.inf.ethz.ch

@spcl_eth

Send

• blocking,

• synchrony implementation dependent

 depends on existence of buffering, performance considerations etc

Recv

• blocking

25

MPI Send and receive defaults

Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of
different variations of
this in MPI.

spcl.inf.ethz.ch

@spcl_eth

 Send a large message from process 0 to process 1
 If there is insufficient storage at the destination, the send must wait for the user to provide the memory space

(through a receive)

 What happens with this code?

26

Sources of deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the availability of
system buffers in which to store the data sent until it can be received

spcl.inf.ethz.ch

@spcl_eth

 Order the operations more carefully:

27

Some Solutions to the “unsafe” Problem

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

spcl.inf.ethz.ch

@spcl_eth

 Supply own space as buffer for send

28

More Solutions to the “unsafe” Problem

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

spcl.inf.ethz.ch

@spcl_eth

 Many parallel programs can be written using just these six functions, only two of which are non-trivial:

 MPI_INIT – initialize the MPI library (must be the first routine called)

 MPI_COMM_SIZE - get the size of a communicator

 MPI_COMM_RANK – get the rank of the calling process in the communicator

 MPI_SEND – send a message to another process

 MPI_RECV – send a message to another process

 MPI_FINALIZE – clean up all MPI state (must be the last MPI function called by

a process)

 For performance, however, you need to use other MPI features

MPI is Simple

spcl.inf.ethz.ch

@spcl_eth

 The irrational number Pi has many digits
 And it’s not clear if they’re randomly distributed!

 But they can be computed

30

Example: compute Pi

for(int i=0; i<numSteps; i++) {
double x=(i + 0.5) * h;
sum += 4.0/(1.0 + x*x);

}
double pi=h * sum ;

spcl.inf.ethz.ch

@spcl_eth

31

Pi’s parallel version MPI.Init(args);
… // declare and initialize variables (sum=0 etc.)
int size = MPI.COMM_WORLD.Size();
int rank = MPI.COMM_WORLD.Rank();

for(int i=rank; i<numSteps; i=i+size) {
double x=(i + 0.5) * h;
sum += 4.0/(1.0 + x*x);

}

if (rank != 0) {
double [] sendBuf = new double []{sum};
// 1-element array containing sum
MPI.COMM_WORLD.Send(sendBuf, 0, 1, MPI.DOUBLE, 0, 10);

}
else { // rank == 0

double [] recvBuf = new double [1] ;
for (int src=1 ; src<P; src++) {

MPI.COMM_WORLD.Recv(recvBuf, 0, 1, MPI.DOUBLE, src, 10);
sum += recvBuf[0];

}
}
double pi = h * sum; // output pi at rank 0 only!
MPI.Finalize();

spcl.inf.ethz.ch

@spcl_eth

COLLECTIVE COMMUNICATION

32

spcl.inf.ethz.ch

@spcl_eth

Up to here: point-to-point communication

MPI also supports communications among groups of processors

• not absolutely necessary for programming (but very nice!)

• but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier, …

33

Group Communication

spcl.inf.ethz.ch

@spcl_eth

34

Collective Computation - Reduce

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D
C

A
B

D
C

A+B+C+D

A

A+B

A+B+C

A+B+C+D

Reduce

Scan

root = rank 0

public void Reduce(java.lang.Object sendbuf,
int sendoffset,
java.lang.Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op,
int root)

spcl.inf.ethz.ch

@spcl_eth

35

Reduce implementation: a tree-structured global sum

1. In the first phase:
(a) Process 1 sends to 0, 3 sends to
2, 5 sends to 4, and 7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in
the received values.

2. Second phase:
(c) Processes 2 and 6 send their new
values to processes 0 and 4,
respectively.
(d) Processes 0 and 4 add the
received values into their new
values.

3. Finally:
(a) Process 4 sends its newest value
to process 0.
(b) Process 0 adds the received
value to its newest value.

spcl.inf.ethz.ch

@spcl_eth

36

Collective Data Movement - Broadcast

A
A

A
A

Broadcast
AP0

P1

P2

P3

spcl.inf.ethz.ch

@spcl_eth

37

Collective Computation - Allreduce

P0

P1

P2

P3

A
B

D
C

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

Allreduce

public void Allreduce(java.lang.Object sendbuf,
int sendoffset,
java.lang.Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op)

Useful in a situation in which all of the processes need the result of a global sum in order
to complete some larger computation.

spcl.inf.ethz.ch

@spcl_eth

38

Allreduce = Reduce + Broadcast?

A global sum followed
by distribution of the
result.Q: What is the number

of steps needed?

spcl.inf.ethz.ch

@spcl_eth

39

Allreduce ≠ Reduce + Broadcast

A butterfly-structured global sum.

Q: What is the number
of steps needed?

spcl.inf.ethz.ch

@spcl_eth

40

spcl.inf.ethz.ch

@spcl_eth

41

Collective Data Movement – Scatter/Gather

A
B

D
C

B C D Scatter

Gather

AP0

P1

P2

P3

 Scatter can be used in a function that reads in an entire vector on process 0 but only
sends the needed components to each of the other processes.

 Gather collects all of the components of the vector onto destination process, then
destination process can process all of the components.

spcl.inf.ethz.ch

@spcl_eth

42

More Collective Data Movement – some more (16 functions total!)

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

spcl.inf.ethz.ch

@spcl_eth

Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g., 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥

43

Matrix-Vector-Multiply

P0 10 20 30 P0 10 20 30

P1 10 20 30

P2 10 20 30

1. Broadcast x

Assume A and x are available only at rank 0!

spcl.inf.ethz.ch

@spcl_eth

Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g., 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥

44

Matrix-Vector-Multiply

2. Scatter A

P0

1 2 3 P0 1 2 3

P1 4 5 6

P2 7 8 9

4 5 6

7 8 9

Assume A and x are available only at rank 0!

spcl.inf.ethz.ch

@spcl_eth

Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g., 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥

45

Matrix-Vector-Multiply

3. Compute locally

P0 1 2 3

P1 4 5 6

P2 7 8 9

10 20 30

10 20 30

10 20 30

140

320

500

=

=

=

spcl.inf.ethz.ch

@spcl_eth

Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g., 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥

46

Matrix-Vector-Multiply

4. Gather result y

P0 140 320 500

P0 140

P1 320

P2 500

spcl.inf.ethz.ch

@spcl_eth

Assume we want to apply the matrix-vector product iteratively

𝑦𝑛 = 𝐴 𝑦𝑛−1

Example Application:
Eigenvalue Problem for Probability Matrix, as used in Google's Pagerank algorithm.

Then each process needs the results of other processes after one step.

Need for Gather + Broadcast in one go.

If you’re clever, you find out how to use reduce_scatter for this!

47

Iterations

spcl.inf.ethz.ch

@spcl_eth

48

Visualizing Program Behavior

spcl.inf.ethz.ch

@spcl_eth

 The de-facto interface for distributed parallel computing (nearly 100%
market share in HPC)

 Elegant and simple interface
 Definitely simpler than shared memory (no races, limited conflicts, avoid deadlocks

with nonblocking communication)

 We only covered the basics here, MPI-3.1 (2015) has 600+ functions
 More concepts:

Derived datatypes

Process topologies

Nonblocking and neighborhood collectives

One-sided accesses (getting the fun of shared memory back …)

Profiling interfaces

…
49

MPI conclusion

spcl.inf.ethz.ch

@spcl_eth

Sorting
(one of the most fun problems in CS)

50

spcl.inf.ethz.ch

@spcl_eth

 D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section
5.3.4: Networks for Sorting, pp. 219–247.

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
1990. ISBN 0-262-03293-7. Chapter 27: Sorting Networks, pp.704–724.

51

Literature

google

"chapter 27 sorting networks"

spcl.inf.ethz.ch

@spcl_eth

Heapsort & Mergesort have O(n log n) worst-case run time

Quicksort has O(n log n) average-case run time

These bounds are all tight, actually (n log n)

So maybe we can dream up another algorithm with a lower asymptotic complexity,
such as O(n) or O(n log log n)

This is unfortunately IMPOSSIBLE!

But why?

52

How Fast can we Sort?

spcl.inf.ethz.ch

@spcl_eth

Assume we have n elements to sort

For simplicity, also assume none are equal (i.e., no duplicates)

How many permutations of the elements (possible orderings)?

Example, n=3

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for first, n-1 for next, n-2 for next, etc. n(n-1)(n-2)…(1) = n! possible orderings

53

Permutations

spcl.inf.ethz.ch

@spcl_eth

Algorithm must “find” the right answer among n! possible answers

Starts “knowing nothing” and gains information with each comparison

Intuition is that each comparison can, at best,
eliminate half of the remaining possibilities

Can represent this process as a decision tree

 Nodes contain “remaining possibilities”

 Edges are “answers from a comparison”

 This is not a data structure but what our proof uses to represent “the most any algorithm
could know”

54

Representing Every Comparison Sort

spcl.inf.ethz.ch

@spcl_eth

55

Decision Tree for n = 3
a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

a ? b

The leaves contain all possible orderings of a, b, c

possible
orders

actual
order

spcl.inf.ethz.ch

@spcl_eth

Binary tree because
 Each comparison has binary outcome

 Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to ask enough questions to
decide among all n! answers

 Every answer is a leaf (no more questions to ask)

 So the tree must be big enough to have n! leaves

 Running any algorithm on any input will at best
correspond to one root-to-leaf path in the decision tree

So no algorithm can have worst-case running time better than the height of the decision tree

56

What the decision tree tells us

spcl.inf.ethz.ch

@spcl_eth

Proven: No comparison sort can have worst-case better than the height of a
binary tree with n! leaves

 Turns out average-case is same asymptotically

 So how tall is a binary tree with n! leaves?

Now: Show a binary tree with n! leaves has height Ω(n log n)

 n log n is the lower bound, the height must be at least this

 It could be more (in other words, a comparison sorting algorithm could take
longer but can not be faster)

Conclude that: (Comparison) Sorting is Ω(n log n)

57

Where are we

spcl.inf.ethz.ch

@spcl_eth

The height of a binary tree with L leaves is at least log2 L

So the height of our decision tree, h:

h log2 (n!) property of binary trees

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms

 (n/2) log2 (n/2) each of the n/2 terms left is log2 (n/2)

 (n/2)(log2 n - log2 2) property of logarithms

 (1/2)nlog2 n – (1/2)n arithmetic

“=“ (n log n)

58

Lower Bound on Height

spcl.inf.ethz.ch

@spcl_eth

59

Breaking the lower bound on sorting

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n) Specialized

algorithms:
O(n)

Insertion sort
Selection sort
Bubble Sort

Shell sort
…

Heap sort
Merge sort

Quick sort (avg)
…

Radix sort

Horrible
algorithms:

Ω(n2)

Bogo Sort (n!)
Stooge Sort (n2.7)

Nothing is ever
straightforward
in computer
science…

Assume 32/64-bit Integer:

232 = 4294967296

13! = 6227020800

264 = 18446744073709551616
21! = 51090942171709440000

spcl.inf.ethz.ch

@spcl_eth

SORTING NETWORKS

60

spcl.inf.ethz.ch

@spcl_eth

61

Comparator

x

y

min(x,y)

max(x,y)
<

x

y

min(x,y)

max(x,y)

shorter notation:

spcl.inf.ethz.ch

@spcl_eth

void compare(int[] a, int i, int j, boolean dir) {

if (dir==(a[i]>a[j])){

int t=a[i];

a[i]=a[j];

a[j]=t;

}

}

62

a[i]

a[j]

a[i]

a[j]
<

spcl.inf.ethz.ch

@spcl_eth

63

Sorting Networks

1

5

4

3

5

1

4

3

1

3

4

5

3

4

3

1

4

5

spcl.inf.ethz.ch

@spcl_eth

64

Sorting networks are data-oblivious (and redundant)

2:3 4:3 2:1 4:1 2:4 3:4 2:1 3:1 1:3 4:3 1:2 4:2 1:4 3:4 1:2 3:2

2:4 2:4 2:3 2:3 1:4 1:4 1:3 1:3

1:3 1:4 2:3 2:4

3:4 3:4

1:2

𝑥1 𝑥2 𝑥3 𝑥4
Data-oblivious comparison tree

redundant cases

no swap swap

spcl.inf.ethz.ch

@spcl_eth

65

Recursive Construction : Insertion

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

𝑥𝑛+1

sorting
network

.

.

.

.

.

.

.

.

.

spcl.inf.ethz.ch

@spcl_eth

66

Recursive Construction: Selection

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

𝑥𝑛+1

sorting
network

.

.

.

.

.

.

.

.

.

spcl.inf.ethz.ch

@spcl_eth

67

Applied recursively..

insertion sort bubble sort

with parallelism: insertion sort = bubble sort !

spcl.inf.ethz.ch

@spcl_eth

How many steps does a computer with infinite number of processors
(comparators) require in order to sort using parallel bubble sort?

Answer: 2n – 3
Can this be improved ?

How many comparisons ?

Answer: (n-1) n/2

How many comparators are required (at a time)?

Answer: n/2
Reusable comparators: n-1

68

Question

spcl.inf.ethz.ch

@spcl_eth

Odd-Even Transposition Sort:

0 9 8 2 7 3 1 5 6 4

1 8 9 2 7 1 3 5 6 4

2 8 2 9 1 7 3 5 4 6

3 2 8 1 9 3 7 4 5 6

4 2 1 8 3 9 4 7 5 6

5 1 2 3 8 4 9 5 7 6

6 1 2 3 4 8 5 9 6 7

7 1 2 3 4 5 8 6 9 7

8 1 2 3 4 5 6 8 7 9

1 2 3 4 5 6 7 8 9

69

Improving parallel Bubble Sort

spcl.inf.ethz.ch

@spcl_eth

void oddEvenTranspositionSort(int[] a, boolean dir) {

int n = a.length;

for (int i = 0; i<n; ++i) {

for (int j = i % 2; j+1<n; j+=2)

compare(a,j,j+1,dir);

}

}

70

spcl.inf.ethz.ch

@spcl_eth

Same number of comparators (at a time)

Same number of comparisons

But less parallel steps (depth): n

71

Improvement?

In a massively parallel
setup, bubble sort is
thus not too bad.

But it can go better...

spcl.inf.ethz.ch

@spcl_eth

 It’s complicated
 In fact, some structures are clear but there is a lot still to be discovered!

 For example:
 what is the minimum number of comparators?

 What is the minimum size?

 Tradeoffs between these two?

72

How to get to a sorting network?

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

RAM : Random Access Machine

 Unbounded local memory

 Each memory has unbounded capacity

 Simple operations: data, comparison, branches

 All operations take unit time

Time complexity: number of steps executed

Space complexity: (maximum) number of memory cells used

73

Interlude: Machine Models

Memory

Processor

spcl.inf.ethz.ch

@spcl_eth

PRAM : Parallel Random Access Machine

 Abstract machine for designing algorithms applicable for parallel computers

 Unbounded collection of RAM processors 𝑃0, 𝑃1, …

 Each processor has unbounded registers

 Unbounded shared memory

 All processors can access all memory in unit time

 All communication via shared memory

74

Machine Models

P0

shared
memory

P1 P2 P3 P4 P5 P6

spcl.inf.ethz.ch

@spcl_eth

ER: processors can simultaneously read from distinct memory locations

EW: processors can simultaneously write to distinct memory locations

CR: processors can simultanously read from any memory location

CW: processors can simultaneously write to any memory location

Specification of the machine model as one of EREW, CREW, CRCW

75

Shared Memory Access Model

spcl.inf.ethz.ch

@spcl_eth

Find maximum of n elements in an array A

Assume 𝑂(𝑛2) processors and the CRCW model

For all 𝑖 ∈ 0,1,… , 𝑛 − 1 in parallel do
𝑃𝑖0:𝑚𝑖 ← 𝑡𝑟𝑢𝑒

For all 𝑖, 𝑗 ∈ 0,1,… , 𝑛 − 1 , 𝑖 ≠ 𝑗 in parallel do
𝑃𝑖𝑗: 𝑖𝑓 𝐴𝑖 < 𝐴𝑗 𝑡ℎ𝑒𝑛 𝑚𝑖 ← 𝑓𝑎𝑙𝑠𝑒

For all 𝑖 ∈ 0,1,… , 𝑛 − 1 in parallel do
𝑃𝑖0: 𝑖𝑓 𝑚𝑖 = 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑚𝑎𝑥 ← 𝐴𝑖

76

Example: Why the machine model can be important

O(1) time
complexity!

spcl.inf.ethz.ch

@spcl_eth

3. ExtractMax2. Compare

1. Init

77

Illustration

1 4 2 9

t t t t f f f t

𝑃00 𝑃10 𝑃20 𝑃30

𝑃01 𝑃03𝑃02

𝑃10 𝑃20 𝑃30

𝑃13𝑃12

𝑃21 𝑃31

𝑃23

𝑃32

max

𝑃00 𝑃10 𝑃20 𝑃30

concurrent writes!

spcl.inf.ethz.ch

@spcl_eth

Q: How many steps does max-find require with CREW?

Using CREW only two values can be merged into a single value by one
processor at a time step: number of values that need to be merged can be
halved at each step Requires Ω(log 𝑛) steps

There are a lot of interesting theoretical results for PRAM machine models
(e.g., CRCW simulatable with EREW) and for PRAM based algorithms (e.g., cost
optimality / time optimality proofs etc). We will not go into more details here.

In the following we assume a CREW PRAM model -- and receive in retrospect a
justification for the results stated above on parallel bubble sorting.

78

CREW

spcl.inf.ethz.ch

@spcl_eth

79

Parallel sorting

Prove that the two networks above sort four numbers. Easy?

depth = 4 depth = 3

spcl.inf.ethz.ch

@spcl_eth

Theorem: If a network with 𝑛 input lines sorts all 2𝑛 sequences of 0s and 1s
into non-decreasing order, it will sort any arbitrary sequence of 𝑛
numbers in nondecreasing order.

80

Zero-one-principle

spcl.inf.ethz.ch

@spcl_eth

Assume a monotonic function 𝑓(𝑥) with 𝑓 𝑥 ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦 and a
network 𝑁 that sorts. Let N transform (𝑥1, 𝑥2, … , 𝑥𝑛) into (𝑦1, 𝑦2, … , 𝑦𝑛), then
it also transforms (𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into (𝑓(𝑦1), 𝑓(𝑦2),… , 𝑓(𝑦𝑛)).

Assume 𝑦𝑖 > 𝑦𝑖+1for some 𝑖, then consider the monotonic function

𝑓(𝑥) = ቊ
0, 𝑖𝑓 𝑥 < 𝑦𝑖
1, 𝑖𝑓 𝑥 ≥ 𝑦𝑖

N converts

(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into 𝑓 𝑦1 , 𝑓(𝑦2 , … 𝑓 𝑦𝑖 , 𝑓 𝑦𝑖+1 , … , 𝑓(𝑦𝑛))

81

Proof

𝑥 not sorted by 𝑁 ⇒ there is an 𝑓 𝑥 ∈ 0,1 𝑛 not sorted by N
⇔

𝑓 sorted by N for all 𝑓 ∈ 0,1 𝑛 ⇒ 𝑥 sorted by N for all x

Argue: If x is sorted by a network N
then also any monotonic function of x.

2081 30 5 9 851 9 20 30

1040 15 2 4 420 4 10 15

Show: If x is not sorted by the network, then there is a
monotonic function f that maps x to 0s and 1s and f(x)
is not sorted by the network

2081 30 5 9 951 8 20 30

100 1 0 1 100 0 1 1

e.g., floor(x/2)

spcl.inf.ethz.ch

@spcl_eth

Assume a monotonic function 𝑓(𝑥) with 𝑓 𝑥 ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦 and a
network 𝑁 that sorts. Let N transform (𝑥1, 𝑥2, … , 𝑥𝑛) into (𝑦1, 𝑦2, … , 𝑦𝑛), then
it also transforms (𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into (𝑓(𝑦1), 𝑓(𝑦2),… , 𝑓(𝑦𝑛)).

Assume 𝑦𝑖 > 𝑦𝑖+1for some 𝑖, then consider the monotonic function

𝑓(𝑥) = ቊ
0, 𝑖𝑓 𝑥 < 𝑦𝑖
1, 𝑖𝑓 𝑥 ≥ 𝑦𝑖

N converts

(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into 𝑓 𝑦1 , 𝑓(𝑦2 , … 𝑓 𝑦𝑖 , 𝑓 𝑦𝑖+1 , … , 𝑓(𝑦𝑛))

82

Proof

1 0

All comparators must act in the same way for
the 𝑓(𝑥𝑖) as they do for the 𝑥𝑖

spcl.inf.ethz.ch

@spcl_eth

Bitonic (Merge) Sort is a parallel algorithm for sorting

If enough processors are available, bitonic sort breaks the lower bound on
sorting for comparison sort algorithm

Time complexity of 𝑂 𝑛 log2 𝑛 (sequential execution)

Time complexity of 𝑂 log2 𝑛 (parallel time)

Worst = Average = Best case

83

Bitonic Sort

spcl.inf.ethz.ch

@spcl_eth

What is a Bitonic Sequence?

84

Monotonic ascending sequence Monotonic descending sequence

spcl.inf.ethz.ch

@spcl_eth

85

Bitonic Sets

A bitonic set is defined as a set in which the sign of the gradient
changes once at most.

So that 𝑥0 ≤ ⋯ ≤ 𝑥𝑘 ≥ ⋯ ≥ 𝑥𝑛−1, for some 𝑘, 0 ≤ 𝑘 < 𝑛

spcl.inf.ethz.ch

@spcl_eth

Bitonic sets - Wraparound

A bitonic sequence is defined as a list with no more than one Local
maximum and no more than one Local minimum.

86

spcl.inf.ethz.ch

@spcl_eth

Bitonic (again)

Sequence (𝑥1, 𝑥2, … , 𝑥𝑛) is bitonic, if it can be circularly shifted such that
it is first monotonically increasing and then monontonically decreasing.

(1, 2, 3, 4, 5, 3, 1, 0) (4, 3, 2, 1, 2, 4, 6, 5)

88

spcl.inf.ethz.ch

@spcl_eth

Bitonic 0-1 Sequences

0𝑖1𝑗0𝑘

1𝑖0𝑗1𝑘

89

spcl.inf.ethz.ch

@spcl_eth

Properties

If (𝑥1, 𝑥2, … , 𝑥𝑛) is monotonically increasing (decreasing) and then
monotonically decreasing (increasing), then it is bitonic

If (𝑥1, 𝑥2, … , 𝑥𝑛) is bitonic, then 𝑥1, 𝑥2, … , 𝑥𝑛
𝑅 ≔ 𝑥𝑛, 𝑥𝑛−1, … , 𝑥1 is

also bitonic

90

spcl.inf.ethz.ch

@spcl_eth

91

The Half-Cleaner

bitonic

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

bitonic

bitonic clean

spcl.inf.ethz.ch

@spcl_eth

92

The Half-Cleaner

bitonic

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

bitonic clean

bitonic

spcl.inf.ethz.ch

@spcl_eth

void halfClean(int[] a, int lo, int m, boolean dir)

{

for (int i=lo; i<lo+m; i++)

compare(a, i, i+m, dir);

}

93

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

m

spcl.inf.ethz.ch

@spcl_eth

1. Divide the bitonic list into two equal halves.

2. Compare-Exchange each item on the first half with the corresponding
item in the second half.

94

Binary Split: Application of the Half-Cleaner

spcl.inf.ethz.ch

@spcl_eth

Two bitonic sequences where the numbers in one sequence are all less than
the numbers in the other sequence.

Because the original sequence was bitonic, every element in the lower half of
new sequence is less than or equal to the elements in its upper half.

95

Binary splits - Result

spcl.inf.ethz.ch

@spcl_eth

96

Bitonic Split Example

+

bitonic bitonic bitonic

spcl.inf.ethz.ch

@spcl_eth

Input bitonic sequence of 0s and 1s, then for the output of the half-cleaner it
holds that

 Upper and lower half is bitonic

 One of the two halfs is bitonic clean

 Every number in upper half ≤ every number in the lower half

97

Lemma

spcl.inf.ethz.ch

@spcl_eth

98

Proof: All cases

0

1

0

bitonic 0

1

1

0
0

1

0

1

0

1

0

1

bitonic

bitonic clean
top

bottom

top

bottom

spcl.inf.ethz.ch

@spcl_eth

99

0

1

0

bitonic

0

1

1

0

0

0

1
1

bitonic clean

bitonictop

bottom

top

bottom

0

0

1

1

spcl.inf.ethz.ch

@spcl_eth

100

0

1

0

bitonic
0 1

0

0

bitonic

bitonic cleantop

bottom

top

bottom

0 1

0

0
0

1

0

0

spcl.inf.ethz.ch

@spcl_eth

101

0

1

0

bitonic
01

0

0

bitonic

bitonic cleantop

bottom

top

bottom

0 1

0

0
0

1

0

0

spcl.inf.ethz.ch

@spcl_eth

102

The four remaining cases (010 101)

1

0

1

bitonic
1

0

0

1
1

0

1

0

bitonic clean

bitonic

top

bottom

top

bottom

0

1

0

1

1

0

1

bitonic

1

0

0

1

1

1

00

bitonic

bitonic clean
top

bottom

top

bottom

0

1

1

0

1

0

1

bitonic 1 0

1

1

bitonic clean

bitonic
top

bottom

top

bottom

10

1

1

1

0

1

1

1

0

1

bitonic 10

1

1

bitonic clean

bitonic
top

bottom

top

bottom

10

1

1

1

0

1

1

spcl.inf.ethz.ch

@spcl_eth

103

Construction of a Bitonic Sorting Network

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

0

1

1

1

bitonic sorted

spcl.inf.ethz.ch

@spcl_eth

104

Recursive Construction

half
cleaner

bitonic
sorter (n/2)

bitonic
sorter (n/2)

bitonic sorter (n) ≝

spcl.inf.ethz.ch

@spcl_eth

void bitonicMerge(int[] a, int lo, int n, boolean dir)

{

if (n>1){

int m=n/2;

halfClean(a, lo, m, dir);

bitonicMerge(a, lo, m, dir);

bitonicMerge(a, lo+m, m, dir);

}

}

105

half
cleaner

bitonic
sorter (n/2)

bitonic
sorter (n/2)

spcl.inf.ethz.ch

@spcl_eth

 Compare-and-exchange moves smaller numbers of each pair to left and
larger numbers of pair to right.

 Given a bitonic sequence, recursively performing ‘binary split’ will sort the
list.

106

Bitonic Merge

spcl.inf.ethz.ch

@spcl_eth

107

Bi-Merger

0

0

1

1

0

0

0

1

0

0

0

0

1

1

0

1

bitonic

bitonic

sorted

sorted

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

bitonic

bitonic

sorted

reverse
sorted

≜ bitonic

Bi-Merger on two sorted sequences acts like a half-cleaner on a bitonic sequence (when one of the sequences is reversed)

bi-merger half-cleaner

spcl.inf.ethz.ch

@spcl_eth

Merger

108

Merger

0

0

1

1

0

0

0

1

0

0

0

0

1

0

1

1

bi merger

half
cleaner

half
cleaner

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

0

1

1

1

sorted

sorted

sorted

spcl.inf.ethz.ch

@spcl_eth

109

Recursive Construction of a Sorter

Sorter(n/2)

Merger (n)Sorter (n) ≝
Sorter(n/2)

spcl.inf.ethz.ch

@spcl_eth

private void bitonicSort(int a[], int lo, int n, boolean dir) {

if (n>1){

int m=n/2;

bitonicSort(a, lo, m, ASCENDING);

bitonicSort(a, lo+m, n, DESCENDING);

bitonicMerge(a, lo, n, dir);

}

}

110

Sorter(n/2)

Merger (n)

Sorter(n/2)

spcl.inf.ethz.ch

@spcl_eth

Merger (8)

111

Example

Merger(4)Merger (2)

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

spcl.inf.ethz.ch

@spcl_eth

112

Example

Merger (8)Merger(4)Merger (2)

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

spcl.inf.ethz.ch

@spcl_eth

How many steps?

𝑖=1

log 𝑛

log 2𝑖 =

𝑖=1

log 𝑛

𝑖 log 2 =
log 𝑛 ⋅ (log 𝑛 + 1)

2
= 𝑂(log2 𝑛)

113

Bitonic Merge Sort

#mergers

#steps /
merger

