GHzürich

HOW PRIVACY-FIRST CONTACT TRACING WORKS

Torsten Hoefler

Parallel Programming

Wait-Free Consensus \& Parallel Algorithms Primer
Microsoft announces new supercomputer, lays out vision for future Al work

Alice s phone broadcasts a random message every few minutes.

Both phones remember what they said \& heard in the past 14 days.

If it "heard" enough messages, meaning Bob was exposed for a long enough time, he'll be alerted.

Alice sits next to Bob. Their phones exchange messages.

If Alice gets Covid-1१, she sends her messages to a hospital.

...but Bob's phone can find out if it "heard" any messages from Covid-११ cases!

And that's how contact tracing can protect our health and privacy!

Learning goals for today

- Understand one fundamental principle of parallel computing - with an impossibility proof!
- Herlihy, Shavit: "The aforementioned corollary is perhaps one of the most striking impossibility results in Computer Science. It explains why, if we want to implement lockfree concurrent data structures on modern multiprocessors, our hardware must provide primitive synchronization operations other than loads and stores (reads-writes)."
- We will proof the impossibility of wait-free consensus with reader/writer registers
- Why wait-free - you should know -
- What is the solution: atomic operations (we already covered it)

They are expensive though! And which operations is still unclear

- Recall the consensus hierarchy!
- Consensus number 1, $2, \ldots, \infty$

Recap: Wait-free Consensus Protocols

Simplification to twothread consensus (it doesn't get simpler than that ())

Which other scenarios are allowed?

Consistent Result

This is illegal!
Consensus result needs to be consistent: the same on all threads.

Valid Result

This is illegal!
Consensus result needs to be valid: proposed by some thread.

Wait-Free

```
I propose
" 23 ".
```



```
I cannot finish because I am waiting for the other thread.
```


This is illegal!
Consensus needs to be wait-free: All threads finish after a finite number of steps, independent of other threads.

Simplification: Binary Consensus

- Instead of proposing an integer, every thread now proposes either 0 or 1
- Equivalent to "normal" consensus for two threads
- How can we proof this?
- If we have int_decide(int) as primitive, we can implement bin_decide(bit)
- and vice-versa

We can implement binary consensus using integer consensus.
(two threads only)

```
int_decide(int d) {
    propose[id] = d; // shared array
    int winner = bin_decide(id);
    return propose[winner];
}
```

We can implement integer consensus using binary consensus (id in $\{0,1\}$ and unique).

State Diagrams of Two-thread Consensus Protocols

Each state has at most two successors: Either A or B execute an instruction.

Initial state, both threads (A and B) have not yet executed the first instruction of the consensus protocol.

This tree must be finite
Final state (decision value of any
final state reached has to be the (because the protocol is waitfree)

Anatomy of a State (in Two-Thread Consensus)

Anatomy of a State - Example

The Concept of Valency

- In binary two-thread consensus, threads either decide zero (0) or one (1)
- At some point during the execution (i.e., a state), each thread will "decide" what to return
- We call a state where a thread has decided on one 1 -valent and a state where a thread has decided on zero 0-valent
- Undecided states are called bivalent - decided states are called univalent

- Lemma 1: The initial state is bivalent

- Proof outline:

Consider initial state with A has input 0 and B has input 1
If A finished before B starts, we must decide 0 and if B finishes before A starts, we must decide 1 (because is only knows the thread's input!)
Thus, the initial state must be bivalent!

1

Critical States in Binary Two-Thread Consensus

Definition: a (bivalent) state is called critical, if both child states are univalent!

There is always at least one bivalent state (the start state).

From this state we only reach states with output 1 , so it is also univalent.

Output states are always univalent.

Critical State Existence Proof

Lemma 2: Every consensus protocol has a

 critical state.Proof: From (bivalent) start state, let the threads only move to other bivalent states.

- If it runs forever the protocol is not wait free.
- If it reaches a position where no moves are possible this state is critical.

Impossibility Proof Setup - Critical State

So what actions can a thread perform in its "move"?

Either read or write a shared register! - Let's see why.

Impossibility Proof Setup - Possible actions of a thread

Impossibility Proof Setup - Possible actions of a thread

Many Cases to check

		First Action		n		Is binary consensus possible for any of those?
		A: r1.read()	A: r1.write()	A: r1.write()	A: r2.write()	
	B: r1.read()					
Second	B: r2.read()					
	B: r1.write()					Can we simplify
	B: r2.write()					somehow?

		Second Action			
		A: r1.read()	A: r2.read()	A: r1.write()	A: r2.write()
First Action	B: r1.read()				
	B: r2.read()				
	B: r1.write()				
	B: r2.write()				

Let's say A always moves first, otherwise, switch names.

Similarly, we can call the register A reads r1 in both cases.

Impossibility Proof Case I: A reads

Output is decided (0) due to critical state.

What did we just prove?

Is binary consensus possible for any of those?

Impossibility Proof Case I': B reads

What did we just prove?

Is binary consensus possible for any of those?

Impossibility Proof Case II: A and B write to different registers

What did we just prove?

		First Action	
		A: r1.read()	A: r1.write()
Second Action	B: r1.read()	No, Case I	No, Case I'
	B: r2.read()	No, Case I	No, Case I'
	B: r1.write()	No, Case I	?
	B: r2.write()	No, Case I	No, Case II

Is binary consensus possible for any of those?

Impossibility Proof Case III: A and B write to the same register

That's all

		First Action		
		A: r1.read()	A: r1.write()	Is binary consensus possible for any of those? No
Second Action	B: r1.read()	No, Case I	No, Case l'	
	B: r2.read()	No, Case I	No, Case I'	
	B: r1.write()	No, Case I	No, Case III	
	B: r2.write()	No, Case I	No, Case II	

1985, 2.5k citations

Impossibility of Distributed Consensus with One Faulty

Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut
NANCY A. LYNCH
Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England
Abstract. The consensus problem involves an asynchronous system of processes, some of which may be

Primer for Parallel Algorithms

- This lecture is called "parallel programming" - unfortunately, there is no "parallel algorithms" lecture in our curriculum. Sequential algorithms are different and programming without algorithms questionable.
- You already heard about work and depth in the first part - I will show you some (simple) and practical algorithms as examples today!
- Recall:
- Work W - number of operations performed when executing the algorithm (= sequential running time for $\mathrm{P}=1$)
- Depth D - minimal number of operations for any parallel execution (= parallel running time for $\mathrm{P}=\infty$) Depth is also the longest path in the computational DAG (cDAG)
- Example: summation of array $a[\mathrm{~N}]$:

```
for(int i=1; i<N; ++i) {
    a[0] += a[i];
}
```


$$
W=N-1 \quad D=N-1 \quad \text { Is this a good parallel algorithm? }
$$

Parallel Summation ("Reduction")

| $a[0]$ | $a[1]$ | $a[2]$ | $a[3]$ | $a[4]$ | $a[5]$ | $a[6]$ | $a[7]$ | $a[8]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Same as best sequential algorithm! "work optimal" ("efficient")

$$
\mathrm{W}=\mathrm{N}-1 \quad \mathrm{D}=\left\lceil\log _{2} \mathrm{~N}\right\rceil
$$

What if $\mathbf{N} \gg P$ (usually the case!)

Write the code for this (in the exercise) for arbitrary N and P !

Now to something real - Parallel Matrix Multiplication (e.g., Neural Networks)

```
##,
    parallel for (int I=0;I<K;++I)
        T[i][j][k] = A[i][k] * B[k][j];
        C[i][j] = reduce(T[i][j][k])
}
```



```
\begin{tabular}{|c|c|}
\hline double \(A[N][K], B[K][M], C[N][M] ;\) & \(W=N M K\) \\
\hline parallel for (int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}\) ) & \(\mathrm{D}=\mathrm{K}\) \\
\hline ```
parallel for (int j=0; j < M; ++ j) {
    C[i][j] = 0;
    for (int I=0; I < K; ++ I)
``` & Can we do better? (What if \(P \gg N M\) ?) \\
\hline
\end{tabular}
double \(A[N][K], B[K][M], C[N][M]\);
double \(T[N][M][P]\)
```

```
parallel for (int i=0; i < N; ++ i)
```

parallel for (int i=0; i < N; ++ i)
parallel for (int j=0; j < M; ++ j) {
parallel for (int j=0; j < M; ++ j) {
parallel for (int r = [0.. P-1]) {
parallel for (int r = [0.. P-1]) {
T[i][j][r] = 0;
T[i][j][r] = 0;
for (int k= r*K/P; k < (r+1)*K / P; k++)
for (int k= r*K/P; k < (r+1)*K / P; k++)
T[i][j][r] = T[i][j][r] + A[i][k]*B[k][j];
T[i][j][r] = T[i][j][r] + A[i][k]*B[k][j];
C[i][j] = reduce(T[i][j][r]);
C[i][j] = reduce(T[i][j][r]);
}}

```
```

