ETH:ziirich e sienzer iy INFK

HOW PRIVACY-FIRST CONTACT TRACING WORKS

TORSTEN HOEFLER ’ S ire

e

Parallel Programming i @q
Walt Free Consensus & ParaIIeI Algorlthms Prlmer o/

; . i Alice's phone broadcasts a random Alice sits next to Bob. Their
R Feie N A T R ".- T e R ok Lol e L S A _. i message every few minutes. phones exchange messages.
May 19

8jUIL4

P®m, Torsten Hoefler @thoefler

Microsoft announces new supercomputer, lays | & st

= M @Microsoft - May 19
3 = £ Microsoft @ @Microsoft - May 19 , , SAI D HEARD
Microsoft's new supercomputer will enable a previously unimaginable
O U \/l S l O n O r U U re WO r #Al software platform to accelerate developer projects, both large and ast5yv llwdaé 89ckxj 3klfw9
small 8jUIL4 S51lPomk g83kxS wWjcdé
Learn more: msft.it/6006TiIKLK #MSBuild s rtxnbk 33trGb 1789xI 439Hxs
| A 49djv7 ryteqs 59f7y5 zpw7UU
supercomputers in the world icture available in Azure to train Q 1 O n T
W is announcing at its Build - — 12poLlV VB490 FFyc67 x1c902
Y IS ¢ ouncing S bu aevel(

Microsoft has built one of the
a extremely large artificial inte

Built in collab:

ten Hoefler Retweeted
ETH Ziirich @ @ETH - Nov 22, 2019 v
Zwei Forschungsgruppen der ETH Ziirich entwickelten eine Methode, die
realitatsnah und effizient elektronische Nanobauteile und deren
Eigenschaften simuliert. Gestern erhielten sie fur ihre Lelslung den Gordon
BeH Pnze fiir Supercomputing. ethz.ch/de/news-und-ve C

iter hos

Both phones remember what they If Alice gets Covid-19, she sends
said & heard in the past 14 days. her messages to a hospital.

dennifer Al models. It

train them

It's also a first st available as ¢

platform for othe

WHAT COVID-19
CASES SAID
=

WHAT COVID-19
Q CASES SAID

(L= fay | BB

...but Bob's phone can find out
. Because the messages are random, if it "heard" any messages
no info's revealed fo the hospital... from Covid-19 cases!

|
s . And hats how contact
If it "heard" enough messages, tracing can protect our
meaning Bob was exposed fora health and privacy!

. long enough time, he'll be alerted.

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Learning goals for today

= Understand one fundamental principle of parallel computing — with an impossibility proof!

= Herlihy, Shavit: “The aforementioned corollary is perhaps one of the most striking impossibility results in Computer
Science. It explains why, if we want to implement lockfree concurrent data structures on modern multiprocessors, our
hardware must provide primitive synchronization operations other than loads and stores (reads— writes).”

= We will proof the impossibility of wait-free consensus with reader/writer registers
= Why wait-free — you should know ©
= What is the solution: atomic operations (we already covered it)
They are expensive though! And which operations is still unclear

= Recall the consensus hierarchy!
= Consensus numberl, 2, ..., ©

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Recap: Wait-free Consensus Protocols

| propose
“34”. | propose
”11”'

Simplification to two-
thread consensus
(it doesn’t get simpler

LTI than that ©)

| propose | propose
1123”. 1142”.

1innnn 1innnn eee 1innnna
1 A few moments ...
- g— - (finite number
EEE of steps) ‘

We EEE -llllll- -‘
agreed : : 1innnn EEE -
on“23”. E E) TIIIL)

We H LI E
agreed LITTD We Which other
on “23” We agreed scenarios are
agreed on “23” allowed?
On 1123”

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Consistent Result

| propose | propose
”23”. 1142”.
E This is illegal!
SEELLL IR Consensus result needs to be
We EEE consistent: the same on all threads.
agreed = =
on”23”_ (AR RRE/
We
agreed
on “42”

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Valid Result

| propose | propose
“237, “42”,
E This is illegal!
SRLEEL IR Consensus result needs to be valid:
We EEE proposed by some thread.
agreed = =
on“420”. "
We
agreed
on “420”

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

4

Wait-Free
| propose | propose
“23” “42”

| will not

schedule you

now!
aingnnn
EEE This is illegal!
el 1innnn
EEE Consensus needs to be wait-free:
e All threads finish after a finite
number of steps, independent of
| cannot finish other threads.
because | am
waiting for
the other

thread.

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Simplification: Binary Consensus

= |nstead of proposing an integer, every thread now proposes either 0 or 1

= Equivalent to “normal” consensus for two threads
= How can we proof this?
= |f we have int_decide(int) as primitive, we can implement bin_decide(bit)

= and vice-versa

—

(two threads only)

bin_decide(bit b) { int_decide(int d) {
return int_decide(b) proposel[id] = d;
} int winner = bin_decide(id);
return propose[winner];
We can implement binary }
consensus using integer
consensus.

We can implement integer
consensus using binary consensus
(id in {0,1} and unique).

spcl.inf.ethz.ch oo o
v oo ETHZUrich

State Diagrams of Two-thread Consensus Protocols

Initial state, both threads (A and B)
have not yet executed the first
instruction of the consensus
protocol.

A moves
B moves

Each state has at most two successors:
Either A or B execute an instruction.

D

Final state (decision value of any
final state reached has to be the
same on both threads!)

This tree must be finite
(because the protocol is wait-
free)

o e S
e

Aaan e ~»\«.».;a"_‘_‘ - S A ; : spcl.inf.ethz.ch m - h
LN \ = 3? - Y @spcl_eth Zurlc

Anatomy of a State (in Two-Thread Consensus)

Shared Variables

Thread local

variables of A Thread local

variables of B

Program
- counter of B
Program

counter of A

spcl.inf.ethz.ch oo o
v ovien ETHzUrich

Anatomy of a State - Example

The states are different, since A has
Shared Variables different local variables and program
rl=3 counter values.

Thread local

variables of A Thread local
variables of B

v=0 Program

counter of B

Program
; S1

counter of A

Shared Variables
r1=3

Thread local

variables of A Thread local
variables of B

Yet from B’s perspective they look the y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A

spcl.inf.ethz.ch oo o
v oo ETHZUrich

The Concept of Valency

= In binary two-thread consensus, threads either decide zero (0) or one (1)

= At some point during the execution (i.e., a state), each thread will “decide” what to return
= We call a state where a thread has decided on one 1-valent and a state where a thread has decided on zero 0-valent
= Undecided states are called bivalent — decided states are called univalent

= Lemma 1: The initial state is bivalent

= Proof outline: @
Consider initial state with A has input 0 and B has input 1

If A finished before B starts, we must decide 0 and if B finishes before A starts, A moves
we must decide 1 (because is only knows the thread’s input!)

Thus, the initial state must be bivalent! - -

B moves

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Critical States in Binary Two-Thread Consensus

Definition: a (bivalent) state is There is always at least one bivalent
called critical, if both child states state (the start state).

are univalent! @
This state is bivalent but all
his successors are)
@ 0 We call such states critical.

From this state we only
reach states with output 1,
so it is also univalent. 1
Output states are always o o
univalent.

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Quiz: Label the States

It is also critical, since it is
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

bivalent!

Output states are al\ Qutput statesa Output states are always
univalent. univaler univalent.

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Critical State Existence Proof

Lemma 2: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

e If it runs forever the protocol is not wait free.

* If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Impossibility Proof Setup — Critical State

Assume we are in the critical

state (which must exist). 0 So what actions can a thread
Assume that if A moves next perform in its “move”?
we end up with O, if B moves

next we end up with 1. Either read or write a shared
(w.l.0.g., can switch names) register! — Let’s see why.

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Impossibility Proof Setup — Possible actions of a thread

critical

So what actions can a thread

A: x=y+2 perform in his “move”?

(x,y,z: local)
What happens if A just reads

from and writes to local vars?

CGEEEED GGEEED GEEND GGEEED GEEED GEEEED $GEEEED 2z GEE -_—_ﬂ

Now the From B’s perspective I
scheduler | these two states look
pauses A, and exactly the same! I
B runs solo I Bocnaen:fo :hkenr:v:;tuhsz:t I Conclus.ic.)n: First instruction
| output 0! I after crltlc?l state must be a
read or write of a shared
I | | variable!
<> '
| | |
- - - - _ ~ D
I - -~ \\\
Output must Output must
be 0

be 1

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Impossibility Proof Setup — Possible actions of a thread

We know reading/writing B can read the
local variables cannot lead 0 same variable Many cases...
out of a critical state — what let’s make tables
remains? B canread a
different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable

B can write a
different variable

spcl.inf.ethz.ch

Many Cases to check

First Action 1
A:rl.read() | A: rl.write() | A: rl.write() | A: r2.write()
B: rl.read()
Sec?nd B: r2.read()
Action
B: rl.write()
B: r2.write() o
Second Action
A:rl.read() | A:r2.read() | A: rl.write() | A: r2.write()
B: rl.read()
First B: r2.read()
Action here-Areads
B: rl.write()
B: r2.write() ®

ETH:zurich

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Similarly, we can call the
register A reads rl in both
cases.

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Impossibility Proof Case I: A reads

Output is decided (0) A reads B does X Output is decided (1)
due to critical state. due to critical state.

O

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

What did we just prove?

First Action

A:rl.read() | A: rl.write()

B: rl.read() clcjnt::r?ers
Second :
Action B: r2.read() ,P possible for any
B: rl.write() ® of those?
B: r2.write()

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Impossibility Proof Case I’: B reads

Output is decided (0) B reads A does X Output is decided (1)
due to critical state. due to critical state.

O

From A’s perspective
these two states look
exactly the same!
However A needs to
(eventually) output
different values!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

O (0|0 | W

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich

spcl.inf.ethz.ch

L 4 @spcl_eth

Impossibility Proof Case ll: A and B write to different registers

Output is decided (0) A writes rl B writes r2 Output is decided (1)

due to critical state. T T=T2 R "u ity due to critical state.

Output 0

Exactly the same state!

However it should be outputting 0
/ 1 depending on where it was
reached from!

ETH:zurich

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o | ||

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Impossibility Proof Case lll: A and B write to the same register

Output is decided (0) A writes 1 B writes r Output is decided (1)
due to critical state. due to critical state.

B writes r l

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

That’s all

First Action

B: rl.read()
Secc?nd B: r2.read()
Action

B: rl.write()

B: r2.write()

A:rl.read() | A: rl.write()

1985, 2.5k citations

Is binary
consensus
possible for any
of those?

No

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may he

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Primer for Parallel Algorithms

= This lecture is called “parallel programming” — unfortunately, there is no “parallel algorithms” lecture in
our curriculum. Sequential algorithms are different and programming without algorithms questionable.

= You already heard about work and depth in the first part — | will show you some (simple) and practical
algorithms as examples today!

= Recall:

= Work W — number of operations performed when executing the algorithm (= sequential running time for P=1)
= Depth D — minimal number of operations for any parallel execution (= parallel running time for P=o0)
Depth is also the longest path in the computational DAG (cDAG)
= Example: summation of array a[N]:
Thisis a
cDAG
for(int i=1; i<N; ++i) {
a[0] += alil;

}

W= N-1 D= N-1 Is this a good parallel algorithm?

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Parallel Summation (“Reduction”)

“TTTLLLL T

Same as best

sequgntial Warning: associativity required!
algorlthm! Can we do
“work optimal” better?

(“efficient”)

W=N-1 D= [log,N]

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

What if N > P (usually the case!)

£ £ £ 3 £ K

N
W=N-1 D= H ~ 1 + [log,P]

Write the code for this (in the exercise) for arbitrary N and P!

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Now to something real — Parallel Matrix Multiplication (e.g., Neural Networks)

double A[N][K], B[K][M], C[N][M]; W=NMK double A[N][K], B[K][M], C[N][M]; W=NMK
for (inti=0; i< N; ++1i) D= NMK parallel for (inti=0; i< N; ++i) D=K
for (intj=0; j < M; ++) { ,Parallel for (int j =0; j < M; ++) { Can we do better?
Clil[jl = 0; Clilljl = 0; (What if P >> NM?)
for (int1=0; | < K; ++) simple parallel for (int1=0; | < K; ++ 1)
C[i][i] += AL][I] * BLIj1; C[i][i] += A[][I] * BLI[j1;
} }
/ double A[N][K], B[K][M], C[N][M];
double A[N][K], B[K][M], C[N][M]; double T[N][M][P]
double T[N][M][K] W=NMK
parallel for (inti=0; i< N; ++i)
parallel for (inti=0; i< N; ++1i) D= log, K parallel for (int j =0; j < M; ++j) {
parallel for (int j =0; j < M; ++j) { » parallel for (int r = [0.. P-1]) {
parallel for (int 1 =0; | < K; ++ 1) T[i][j]10r] = O;
TLIGIK] = ALilk] * BIK]Lj1; What is the problem? for (int k = r*K/P; k < (r +1) * K/ P; k++)
C[i][j] = reduce(T[i][jl[k]) T[][10r] = TOIGIe] + AGTIKT*BLK](];
} C[i][j] = reduce(T[i][jl[r]) ;

b}

