ETH:ziirich e etz oy INFK

HOW PRIVACY-FIRST CONTACT TRACING WORKS

TORSTEKMOEFLER ’ S ire

e

Parallel Programming e @ 5
Wait-Free Consensus & Parallel Algorithms Prlm o/

; : Alice's phone broadcasts a random Alice sits next to Bob. Their
ST p&" ‘j‘fz:q‘:nm‘ -'kl‘.'._".“_-_. ‘»ﬁr. ' .; ol

message every few minutes. phones exchange messages.
Microsoft announces new supercomputer, lays

8jUIL4

Torsten Hoefler @
Sabbatical well spent ;).

= M @Microsoft - May 19
3 = £ Microsoft @ @Microsoft - May 19 , , SAI D HEARD
Microsoft's new supercomputer will enable a previously unimaginable
O U \/l S l O n O r U U re WO r #Al software platform to accelerate developer projects, both large and ast5yv llwdaé 89ckxj 3klfw9
small 8jUIL4 S51lPomk g83kxS wWjcdé
Learn more: msft.it/6006TiIKLK #MSBuild s rtxnbk 33trGb 1789xI 439Hxs
| A 49djv7 ryteqs 59f7y5 zpw7UU
upercomputers in the we T icture available in Azure to train (@) 111 vl 1
§ Y ' - B — 12poLlV VB490 FFyc67 x1c902
n Wy is announcing at its Build de C

Microsoft has built one of the to
extremely large artificial intelliger
Built in collaboration

ith and exclusive ten Hoefle

. ST Both phones remember what they If Alice gets Covid-19, she sends
ETH Ziirich @ @ETH - Nov 22, 2019 v X R 4
Zwei Forschungsgruppen der ETH Ziirich entwickelten eine Methode, die Sald & heard n +he pas‘|‘ 1"1 days. her messages 1-0 a hOSPﬁ'QL

realitatsnah und effizient elektronische Nanobauteile und deren
Eigenschaften simuliert. Gestern erhielten sie fur ihre Lelslung den Gordon

BeH Pnze fiir Supercomputing. ethz.ch/de/news-und-ve
CSatET

train that ¢

omputing techno

specifically to

-

ts a key milestone in a

May 19, 2020

je Al models and the infrastructure needed to train them available as a

WHAT COVID-19
asES SAID

WHAT COVID-19
(} CASES SAID

se models is the

fits extend far beyond

= N

...but Bob's phone can find out
. Because the messages are random, if it "heard" any messages

o no info's revealed fo the hospital... from Covid-19 cases!
A
' >~
I v ﬁ)
s . And hats how contact
R ow If it "heard” enough messages, tracing can protect our
g5 meaning Bob was exposed fora health and privacy!

. long enough time, he'll be alerted.

v ooaon ETHZziirich

Learning goals for today

A Understand one fundamental principle of parallel computiggvith an impossibility proof!
A Herlihy,Shavita ¢ KS | FT2NBYSYiA2ySR O2NRffI NE A& LISNKI LA 2V
Science. It explains why, if we want to implerlenkfreeconcurrent data structures on modern multiprocessors, ou
hardware must provide primitive synchronization operations other than loads and storesc(gedtls 0 S 8 U d¢€

A We will proof the impossibility of waitfree consensus with reader/writer registers
A Why waitfree ¢ you should knowl
A What is the solution: atomic operations (we already covered it)

They are expensive though! And which operations is still unclear

A Recall the consensus hierarchy!
Al 2yaSyadza yi#YoSNI mMmI HI X3I

v oo on ETHZzUrich

Recap: WaHfree Consensus Protocols

| propose | propose | pér(oopol;seé o
AHOEOD ANHEOD
1 I FS¢ Y2y Ua
- g— - (finite number
EEE of steps)
e
agreed : : Innnnn
2YAHOED g : :
we]
agreed TIIIL
agreed

2y A@HOE

| propose

AaMME D

X

We

agreed

2y

dHOE

6 AU

Simplification to twe

thread consensus
R2SayQi

than thatJ)

Which other
scenarios are
allowed?

v ouaon ETHZziirich

Consistent Result

| propose | propose
AHOEOD ANHEOD
1Iinnnn 1Iinnnn

!

T Consensus result needs to be

This is illegal!

We EEE consistentthe same on all threads.
agreed = z
2YVAHOED " g
We
agreed

2y dAnHE

v ouaon ETHZziirich

Valid Result

| propose | propose
AHOEOD ANHEOD
1Iinnnn 1Iinnnn

!

TIIL Consensus result needs to helid:

This is illegal!

We EEE proposed by some thread.
agreed = z
2YVAanHNED g
We
agreed

2Y AanHANE

v ouaon ETHZziirich

Walit-Free
| propose | propose
AOHOE D ANHEOD
E E | will not
‘ schedule you
now!
E This is illegall
;E; : Consensus needs to beait-free:
s All threads finish after a finite
number of steps, independent of
| cannot finish other threads.
because | am
waiting for
the other

thread.

v ooaon ETHZziirich

Simplification: Binary Consensus

A Instead of proposing an integer, every thread now proposes either 0 or 1

A9ljdAagdltSyld (2 ay2NXIFfé¢ O2yasSyadza FT2N 062 0KNBI
A How can we proof this?
A If we haveint_decid€int) as primitive, we can implemebin_decidgbit)
A and viceversa

—

(two threads only)

bin_decidébit b) { int_decidgint d) {
return int_decidegb) propose[id] = d;
} int winner =bin_decid€id);
return propose[winner];
We can implement binary }
consensus using integer
consensus.

We can implement integer
consensus using binary consensus
(id in {0,1} and unique).

v ooaon ETHZziirich

State Diagrams of Twahread Consensus Protocols

Initial state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

A moves
B moves

Each state has at most tvsuccessors
Either A or B execute an instruction.

D

Final state(decision value of any
final state reached has to be the
same on both threads!)

This treemustbe finite
(because the protocol is walit
free)

S

Y \«.«g\ e 5 - P : spcl.inf.ethz.ch
st s ' w oscen IERH ZUrich

Anatomy of a State (in Twd hread Consensus)

Shared Variables
Thread local
variables of A Thread local
variables of B
Program
counter of B

counter of A

v ooaon ETHZziirich

The states are different, since A has
different local variables and program
counter values.

hread loca

variables of A hread loca
variables of B

y=0

Program
Brogram counéelr of B
counter of A
hread loca

o i o - variables of B
.SuU FNRY . Qa LISNRLISONKA @S : y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A

v ooaon ETHZziirich

The Concept of Valency

A In binary twothread consensus, threads either decide zero (0) or one (1)

Al1G a42YS LRAY(Gl RdNAyYy3 GKS SESOdziAz2y O6APSPT | &l
A We call a state where a thread has decided on omalgnt and a state where a thread has decided on zeval@nt
A Undecided states are called bivaleptiecided states are called univalent

A Lemma 1: The initial state is bivalent

A Proof outline:
Consider initial state with A has input 0 and B has input 1
If A finished before B starts, we must decide 0 and if B finishes before A startgy moves B ‘
63 Ydzali RSOARS M 6080Fdad Aa 2yfa {55 CKNE
Thus, the initial state must be bivalent!

v ooaon ETHZziirich

Critical States in Binary Twohread Consensus

Definition: a (bivalent) state is There is always at least ohesalent
calledcritical, if both child states state (the start state).

are univalent! m
This state i®ivalent but all
his successors are: :
@ @ We call such statesritical.

From this state we only
reach states with output 1,
so it is alsanivalent. 1
Output states are always o o
univalent.

v ooaon ETHZziirich

Quiz: Label the States

It is also critical, since itis
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

-

bivalent!

Output states are ¢ Qutput states ~ Output states are always
univalent. univalel univalent.

v oaoon ETHZzUrich

Critical State Existence Proof

Lemma 2: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

A If it runs forever the protocol is not wait free.

A If it reaches a position where no moves are possible
this state is critical.

v ouaon ETHZziirich

Impossibility Proof Setugg, Critical State

Assume we are in the critical _
state (which must exist). @ So what actions can a thread
Assume that if A moves next LISNFZ2NY Ay Ada

we end up with O, if B moves _ _
next we end up with 1. Either read or write a shared

(w.l.0.g, can switch names) registerl[SG Qa aSS ¢

v ooaon ETHZziirich

Impossibility Proof Setug Possible actions of a thread

critical
So what actions can a thread

LISNF2NY Ay KAa

________ - —_——— What happens if A just reads
03 LIS NE LIS O A fa and writes to local vars?

Now the CNZ Y
scheduler these two states look
pauses A, and I exactly the same! |
B cannot know that _ o _
B runs solo I o | Conclusion: First instruction
| output 0! | after critical state must be a
' read or write of a shared
I | | variable!
- - = = = - T T T~ D
I - — \\
—

Output must Output must
be O be 1

v oaoon ETHZzUrich

Impossibility Proof Setug Possible actions of a thread

We know reading/writing B can read the _
local variables cannot lead @ same variable al ye Ol a.
out of a critical state what f g l:I 03 Y| °
remains? B can read a
different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable B can write a

different variable

Many Cases to check

First Action DN
A:rl.read()| A: rL.write()| A: rl.write()| A: r2.write()
B: rl.read()
Second | g 2 read()
Action :
B: rl.write()
B: r2.write() o
Second Action
A:rl.read()| A: r2.read() | A: rl.write()| A: r2.write()
B: rl.read()
Ai[isotn 5. rz'rez_?‘ﬂgnagab!#\ —_—
B: rl.write()
B: r2.write()

(0p)

spcl.inf.ethz.ch
y @spcl_eth

Is binary
consensus

ETH:zurich

possible for any

of those?

Can we simplify

[

somehow?

SiQa a

e I |

otherwise, switch names.

Ol aSa

g KSNEBE |

Similarly, we can call the
register A reads rl in both

cases.

t

v ouaon ETHZziirich

Impossibility Proof Case I: A reads

Output is decided (0) A read Bdoes X output is decided (1)
due to critical state. due to critical state.

O CNEY . Q& LISNELISOGADS
these two states look

exactly the same!
However B needs to
output different
values!

v oo on ETHZzUrich

What did we just prove?

First Action
A:rl.read()| A: rl.write()

Is binar
B: rl.read() consens)lljs
d . :
ii(t:i%?] B: r2.read() possible for any
B: rl.write() of those?
B: r2.write()

