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Learning goals for today

= Understand one fundamental principle of parallel computing — with an impossibility proof!

= Herlihy, Shavit: “The aforementioned corollary is perhaps one of the most striking impossibility results in Computer
Science. It explains why, if we want to implement lockfree concurrent data structures on modern multiprocessors, our
hardware must provide primitive synchronization operations other than loads and stores (reads— writes).”

= We will proof the impossibility of wait-free consensus with reader/writer registers
= Why wait-free — you should know ©
= What is the solution: atomic operations (we already covered it)
They are expensive though! And which operations is still unclear

= Recall the consensus hierarchy!
= Consensus numberl, 2, ..., ©
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Recap: Wait-free Consensus Protocols

| propose
“34”. | propose
”11”'

Simplification to two-
thread consensus
(it doesn’t get simpler

LTI than that ©)

| propose | propose
1123”. 1142”.

1innnn 1innnn eee 1innnna
1 A few moments ...
- g— - (finite number
EEE of steps) ‘

We EEE -llllll- -‘
agreed : : 1innnn EEE -
on“23”. E E ) TIIIL )

We H LI E
agreed LITTD We Which other
on “23” We agreed scenarios are
agreed on “23” allowed?
On 1123”
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Consistent Result

| propose | propose
”23”. 1142”.
E This is illegal!
SEELLL IR Consensus result needs to be
We EEE consistent: the same on all threads.
agreed = =
on”23”_ (AR RRE/
We
agreed
on “42”
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Valid Result

| propose | propose
“237, “42”,
E This is illegal!
SRLEEL IR Consensus result needs to be valid:
We EEE proposed by some thread.
agreed = =
on“420”. "
We
agreed
on “420”



spcl.inf.ethz.ch oo o
v oo ETH ZUrich

4

Wait-Free
| propose | propose
“23” “42”

| will not

schedule you

now!
aingnnn
EEE This is illegal!
el 1innnn
EEE Consensus needs to be wait-free:
e All threads finish after a finite
number of steps, independent of
| cannot finish other threads.
because | am
waiting for
the other

thread.
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Simplification: Binary Consensus

= |nstead of proposing an integer, every thread now proposes either 0 or 1

= Equivalent to “normal” consensus for two threads
= How can we proof this?
= |f we have int_decide(int) as primitive, we can implement bin_decide(bit)

= and vice-versa

—

(two threads only)

bin_decide(bit b) { int_decide(int d) {
return int_decide(b) proposel[id] = d;
} int winner = bin_decide(id);
return propose[winner];
We can implement binary }
consensus using integer
consensus.

We can implement integer
consensus using binary consensus
(id in {0,1} and unique).
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State Diagrams of Two-thread Consensus Protocols

Initial state, both threads (A and B)
have not yet executed the first
instruction of the consensus
protocol.

A moves
B moves

Each state has at most two successors:
Either A or B execute an instruction.

D

Final state (decision value of any
final state reached has to be the
same on both threads!)

This tree must be finite
(because the protocol is wait-
free)
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Anatomy of a State (in Two-Thread Consensus)

Shared Variables

Thread local

variables of A Thread local

variables of B

Program
- counter of B
Program

counter of A
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Anatomy of a State - Example

The states are different, since A has
Shared Variables different local variables and program
rl=3 counter values.

Thread local

variables of A Thread local
variables of B

v=0 Program

counter of B

Program
; S1

counter of A

Shared Variables
r1=3

Thread local

variables of A Thread local
variables of B

Yet from B’s perspective they look the y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A
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The Concept of Valency

= In binary two-thread consensus, threads either decide zero (0) or one (1)

= At some point during the execution (i.e., a state), each thread will “decide” what to return
= We call a state where a thread has decided on one 1-valent and a state where a thread has decided on zero 0-valent
= Undecided states are called bivalent — decided states are called univalent

= Lemma 1: The initial state is bivalent

= Proof outline: @
Consider initial state with A has input 0 and B has input 1

If A finished before B starts, we must decide 0 and if B finishes before A starts, A moves
we must decide 1 (because is only knows the thread’s input!)

Thus, the initial state must be bivalent! - -

B moves
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Critical States in Binary Two-Thread Consensus

Definition: a (bivalent) state is There is always at least one bivalent
called critical, if both child states state (the start state).

are univalent! @
This state is bivalent but all
his successors are )
@ 0 We call such states critical.

From this state we only
reach states with output 1,
so it is also univalent. 1
Output states are always o o
univalent.
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Quiz: Label the States

It is also critical, since it is
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

bivalent!

Output states are al\  Qutput statesa  Output states are always
univalent. univaler univalent.
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Critical State Existence Proof

Lemma 2: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

e If it runs forever the protocol is not wait free.

* If it reaches a position where no moves are possible
this state is critical.
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Impossibility Proof Setup — Critical State

Assume we are in the critical

state (which must exist). 0 So what actions can a thread
Assume that if A moves next perform in its “move”?
we end up with O, if B moves

next we end up with 1. Either read or write a shared
(w.l.0.g., can switch names) register! — Let’s see why.
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Impossibility Proof Setup — Possible actions of a thread

critical

So what actions can a thread

A: x=y+2 perform in his “move”?

(x,y,z: local)
What happens if A just reads

from and writes to local vars?

CGEEEED GGEEED GEEND GGEEED GEEED GEEEED $GEEEED 2z GEE -_—_ﬂ

Now the From B’s perspective I
scheduler | these two states look
pauses A, and exactly the same! I
B runs solo I Bocnaen:fo :hkenr:v:;tuhsz:t I Conclus.ic.)n: First instruction
| output 0! I after crltlc?l state must be a
read or write of a shared
I | | variable!
<> '
| | |
- - - - _ ~ D
I - -~ \\\
Output must Output must
be 0

be 1
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Impossibility Proof Setup — Possible actions of a thread

We know reading/writing B can read the
local variables cannot lead 0 same variable Many cases...
out of a critical state — what let’s make tables
remains? B canread a
different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable

B can write a
different variable
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Many Cases to check

First Action 1
A:rl.read() | A: rl.write() | A: rl.write() | A: r2.write()
B: rl.read()
Sec?nd B: r2.read()
Action
B: rl.write()
B: r2.write() o
Second Action
A:rl.read() | A:r2.read() | A: rl.write() | A: r2.write()
B: rl.read()
First B: r2.read()
Action here-Areads
B: rl.write()
B: r2.write() ®

ETH:zurich

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Similarly, we can call the
register A reads rl in both
cases.
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Impossibility Proof Case I: A reads

Output is decided (0) A reads B does X Output is decided (1)
due to critical state. due to critical state.

O

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!
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What did we just prove?

First Action

A:rl.read() | A: rl.write()

B: rl.read() clcjnt::r?ers
Second :
Action B: r2.read() ,P possible for any
B: rl.write() ® of those?
B: r2.write()
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Impossibility Proof Case I’: B reads

Output is decided (0) B reads A does X Output is decided (1)
due to critical state. due to critical state.

O

From A’s perspective
these two states look
exactly the same!
However A needs to
(eventually) output
different values!
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What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

O (0|0 | W

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich
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Impossibility Proof Case ll: A and B write to different registers

Output is decided (0) A writes rl B writes r2 Output is decided (1)

due to critical state. T T=T2 R "u ity due to critical state.

Output 0

Exactly the same state!

However it should be outputting 0
/ 1 depending on where it was
reached from!

ETH:zurich
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What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o | ||

: r2.write()

A:rl.read() | A: rl.write()

L 4 @spcl_eth

Is binary
consensus
possible for any
of those?

ETH:zurich
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Impossibility Proof Case lll: A and B write to the same register

Output is decided (0) A writes 1 B writes r Output is decided (1)
due to critical state. due to critical state.

B writes r l

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!
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That’s all

First Action

B: rl.read()
Secc?nd B: r2.read()
Action

B: rl.write()

B: r2.write()

A:rl.read() | A: rl.write()

1985, 2.5k citations

Is binary
consensus
possible for any
of those?

No

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may he
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Primer for Parallel Algorithms

= This lecture is called “parallel programming” — unfortunately, there is no “parallel algorithms” lecture in
our curriculum. Sequential algorithms are different and programming without algorithms questionable.

= You already heard about work and depth in the first part — | will show you some (simple) and practical
algorithms as examples today!

= Recall:

= Work W — number of operations performed when executing the algorithm (= sequential running time for P=1)
= Depth D — minimal number of operations for any parallel execution (= parallel running time for P=o0)
Depth is also the longest path in the computational DAG (cDAG)
= Example: summation of array a[N]:
Thisis a
cDAG
for(int i=1; i<N; ++i) {
a[0] += alil;

}

W= N-1 D= N-1 Is this a good parallel algorithm?
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Parallel Summation (“Reduction”)

“TTTLLLL T

Same as best

sequgntial Warning: associativity required!
algorlthm! Can we do
“work optimal” better?

(“efficient”)

W=N-1 D= [log,N]
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What if N > P (usually the case!)

£ £ £ 3 £ K

N
W=N-1 D= H ~ 1 + [log,P]

Write the code for this (in the exercise) for arbitrary N and P!
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Now to something real — Parallel Matrix Multiplication (e.g., Neural Networks)

double A[N][K], B[K][M], C[N][M]; W=NMK double A[N][K], B[K][M], C[N][M]; W=NMK
for (inti=0; i< N; ++1i) D= NMK parallel for (inti=0; i< N; ++i) D=K
for (intj=0; j < M; ++ ) { ,Parallel for (int j =0; j < M; ++ ) { Can we do better?
Clil[jl = 0; Clilljl = 0; (What if P >> NM?)
for (int1=0; | < K; ++ ) simple parallel for (int1=0; | < K; ++ 1)
C[i][i] += AL][I] * BLIj1; C[i][i] += A[][I] * BLI[j1;
} }
/ double A[N][K], B[K][M], C[N][M];
double A[N][K], B[K][M], C[N][M]; double T[N][M][P]
double T[N][M][K] W=NMK
parallel for (inti=0; i< N; ++i)
parallel for (inti=0; i< N; ++1i) D= log, K parallel for (int j =0; j < M; ++j) {
parallel for (int j =0; j < M; ++j) { » parallel for (int r = [0.. P-1]) {
parallel for (int 1 =0; | < K; ++ 1) T[i][j]10r] = O;
TLIGIK] = ALilk] * BIK]Lj1; What is the problem? for (int k = r*K/P; k < (r +1) * K/ P; k++)
C[i][j] = reduce(T[i][jl[k]) T[][10r] = TOIGIe] + AGTIKT*BLK](];
} C[i][j] = reduce(T[i][jl[r]) ;

b}



