
spcl.inf.ethz.ch

@spcl_eth

TORSTENHOEFLER

Parallel Programming

Wait-Free Consensus & Parallel Algorithms Primer

spcl.inf.ethz.ch

@spcl_eth

Á Understand one fundamental principle of parallel computing ςwith an impossibility proof!

ÁHerlihy, Shavit: ά¢ƘŜ ŀŦƻǊŜƳŜƴǘƛƻƴŜŘ ŎƻǊƻƭƭŀǊȅ ƛǎ ǇŜǊƘŀǇǎ ƻƴŜ ƻŦ ǘƘŜ Ƴƻǎǘ ǎǘǊƛƪƛƴƎ ƛƳǇƻǎǎƛōƛƭƛǘȅ ǊŜǎǳƭǘǎ ƛƴ /ƻƳǇǳǘŜǊ
Science. It explains why, if we want to implement lockfreeconcurrent data structures on modern multiprocessors, our
hardware must provide primitive synchronization operations other than loads and stores (readsςǿǊƛǘŜǎύΦέ

Á We will proof the impossibility of wait-free consensus with reader/writer registers

ÁWhy wait-free ςyou should know J

ÁWhat is the solution: atomic operations (we already covered it)

They are expensive though! And which operations is still unclear

Á Recall the consensus hierarchy!

Á/ƻƴǎŜƴǎǳǎ ƴǳƳōŜǊ мΣ нΣ ΧΣ Њ

2

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

3

Recap: Wait-free Consensus Protocols

I propose
άноέΦ

I propose
άпнέΦ

! ŦŜǿ ƳƻƳŜƴǘǎ Χ
(finite number

of steps)

We
agreed
ƻƴάноέΦ

We
agreed
ƻƴ άноέ

Which other
scenarios are
allowed?

I propose
άопέΦ I propose

άммέΦ

We
agreed
ƻƴ άноέ

We
agreed
ƻƴ άноέ

...

Simplification to two-
thread consensus
όƛǘ ŘƻŜǎƴΩǘ ƎŜǘ ǎƛƳǇƭŜǊ

than that J)

spcl.inf.ethz.ch

@spcl_eth

4

Consistent Result

I propose
άноέΦ

I propose
άпнέΦ

We
agreed
ƻƴάноέΦ

We
agreed
ƻƴ άпнέ

This is illegal!

Consensus result needs to be
consistent:the same on all threads.

spcl.inf.ethz.ch

@spcl_eth

5

Valid Result

I propose
άноέΦ

I propose
άпнέΦ

We
agreed
ƻƴάпнлέΦ

We
agreed
ƻƴ άпнлέ

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

spcl.inf.ethz.ch

@spcl_eth

6

Wait-Free

I propose
άноέΦ

I propose
άпнέΦ

I cannot finish
because I am
waiting for
the other
thread.

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.

I will not
schedule you

now!

spcl.inf.ethz.ch

@spcl_eth

Á Instead of proposing an integer, every thread now proposes either 0 or 1

Á 9ǉǳƛǾŀƭŜƴǘ ǘƻ άƴƻǊƳŀƭέ ŎƻƴǎŜƴǎǳǎ ŦƻǊ ǘǿƻ ǘƘǊŜŀŘǎ

ÁHow can we proof this?

Á If we have int_decide(int) as primitive, we can implement bin_decide(bit)

Áand vice-versa

7

Simplification: Binary Consensus

bin_decide(bit b) {
return int_decide(b)

}

int_decide(int d) {
propose[id] = d;// shared array
int winner = bin_decide(id);
return propose[winner];

}We can implement binary
consensus using integer
consensus.

We can implement integer
consensus using binary consensus
(id in {0,1} and unique).

(two threads only)

spcl.inf.ethz.ch

@spcl_eth

8

State Diagrams of Two-thread Consensus Protocols

Initial state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

Each state has at most two successors:
Either A or B execute an instruction.

A moves
B moves

1

Final state (decision value of any
final state reached has to be the

same on both threads!)

This tree must be finite
(because the protocol is wait-

free)

spcl.inf.ethz.ch

@spcl_eth

9

Anatomy of a State (in Two-Thread Consensus)

Shared Variables

Thread local
variables of A Thread local

variables of B

Program
counter of A

Program
counter of B

spcl.inf.ethz.ch

@spcl_eth

10

Anatomy of a State - Example

Shared Variables
r1=3

Thread local
variables of A

x=2

Thread local
variables of B

y=0

Program
counter of A

S3

Program
counter of B

S1
Shared Variables

r1=3

Thread local
variables of A

x=1

Thread local
variables of B

y=0

Program
counter of A

S5

Program
counter of B

S1

The states are different, since A has
different local variables and program
counter values.

¸Ŝǘ ŦǊƻƳ .Ωǎ ǇŜǊǎǇŜŎǘƛǾŜ ǘƘŜȅ ƭƻƻƪ ǘƘŜ
same! (Until A writes x into a shared
variable!)

spcl.inf.ethz.ch

@spcl_eth

Á In binary two-thread consensus, threads either decide zero (0) or one (1)

Á !ǘ ǎƻƳŜ Ǉƻƛƴǘ ŘǳǊƛƴƎ ǘƘŜ ŜȄŜŎǳǘƛƻƴ όƛΦŜΦΣ ŀ ǎǘŀǘŜύΣ ŜŀŎƘ ǘƘǊŜŀŘ ǿƛƭƭ άŘŜŎƛŘŜέ ǿƘŀǘ ǘƻ ǊŜǘǳǊƴ

ÁWe call a state where a thread has decided on one 1-valent and a state where a thread has decided on zero 0-valent

ÁUndecided states are called bivalent ςdecided states are called univalent

Á Lemma 1: The initial state is bivalent

ÁProof outline:

Consider initial state with A has input 0 and B has input 1

If A finished before B starts, we must decide 0 and if B finishes before A starts,
ǿŜ Ƴǳǎǘ ŘŜŎƛŘŜ м όōŜŎŀǳǎŜ ƛǎ ƻƴƭȅ ƪƴƻǿǎ ǘƘŜ ǘƘǊŜŀŘΩǎ ƛƴǇǳǘΗύ

Thus, the initial state must be bivalent!

11

The Concept of Valency

A moves
B moves

1

0|1

spcl.inf.ethz.ch

@spcl_eth

12

Critical States in Binary Two-Thread Consensus

0|1

There is always at least one bivalent
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always
univalent.

From this state we only
reach states with output 1,

so it is also univalent.

This state is bivalent but all
his successors are univalent.
We call such states critical.

Definition: a (bivalent) state is
called critical, if both child states
are univalent!

spcl.inf.ethz.ch

@spcl_eth

13

Quiz: Label the States

1 1 0 1

Output states are always
univalent.

Output states are always
univalent.

Output states are always
univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.

It is also critical, since it is
bivalent and all its successors

are univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.
The start state is always

bivalent!

This state is bivalent, as we
can reach 0 and 1 output

states.

spcl.inf.ethz.ch

@spcl_eth

14

Critical State Existence Proof

Lemma 2: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

Å If it runs forever the protocol is not wait free.

Å If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch

@spcl_eth

15

Impossibility Proof Setup ςCritical State

0|1

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next
we end up with 0, if B moves

next we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So what actions can a thread
ǇŜǊŦƻǊƳ ƛƴ ƛǘǎ άƳƻǾŜέΚ

Either read or write a shared
register! ς[ŜǘΩǎ ǎŜŜ ǿƘȅΦ

spcl.inf.ethz.ch

@spcl_eth

16

Impossibility Proof Setup ςPossible actions of a thread

0|1 So what actions can a thread
ǇŜǊŦƻǊƳ ƛƴ Ƙƛǎ άƳƻǾŜέΚ

What happens if A just reads
from and writes to local vars?

critical

A: x=y+z
(x,y,z: local)

0

Output must
be 0

Output must
be 1

Now the
scheduler

pauses A, and
B runs solo

CǊƻƳ .Ωǎ ǇŜǊǎǇŜŎǘƛǾŜ
these two states look

exactly the same!
B cannot know that
one of them must

output 0!

Conclusion: First instruction
after critical state must be a
read or write of a shared
variable!

spcl.inf.ethz.ch

@spcl_eth

17

Impossibility Proof Setup ςPossible actions of a thread

0|1

0 1

A moves
first

B moves
first

We know reading/writing
local variables cannot lead

out of a critical state ςwhat
remains?

A can read a
shared variable

A can write a
shared variable

B can read the
same variable

B can read a
different variable

B can write the
same variable

B can write a
different variable

aŀƴȅ ŎŀǎŜǎΧ
ƭŜǘΩǎ ƳŀƪŜ ǘŀōƭŜǎ

spcl.inf.ethz.ch

@spcl_eth

18

Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary
consensus

possible for any
of those?

Can we simplify
somehow?

[ŜǘΩǎ ǎŀȅ ! ŀƭǿŀȅǎ ƳƻǾŜǎ ŦƛǊǎǘΣ
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the
register A reads r1 in both
cases.

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

ManagableΧ [ŜǘΩǎ ƭƻƻƪ ŀǘ ǘƘŜ ŎŀǎŜǎ ǿƘŜǊŜ ! ǊŜŀŘǎ

spcl.inf.ethz.ch

@spcl_eth

19

Impossibility Proof Case I: A reads

0|1

Output is decided (0)
due to critical state.

A reads B does X Output is decided (1)
due to critical state.

B does X

CǊƻƳ .Ωǎ ǇŜǊǎǇŜŎǘƛǾŜ
these two states look

exactly the same!
However B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

20

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

