
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Wait-Free Consensus & Parallel Algorithms Primer

spcl.inf.ethz.ch

@spcl_eth

▪ Understand one fundamental principle of parallel computing – with an impossibility proof!

▪ Herlihy, Shavit: “The aforementioned corollary is perhaps one of the most striking impossibility results in Computer
Science. It explains why, if we want to implement lockfree concurrent data structures on modern multiprocessors, our
hardware must provide primitive synchronization operations other than loads and stores (reads– writes).”

▪ We will proof the impossibility of wait-free consensus with reader/writer registers

▪ Why wait-free – you should know ☺

▪ What is the solution: atomic operations (we already covered it)

They are expensive though! And which operations is still unclear

▪ Recall the consensus hierarchy!

▪ Consensus number 1, 2, …, ∞

2

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

3

Recap: Wait-free Consensus Protocols

I propose
“23”.

I propose
“42”.

A few moments …
(finite number

of steps)

We
agreed
on“23”.

We
agreed
on “23”

Which other
scenarios are
allowed?

I propose
“34”. I propose

“11”.

We
agreed
on “23”

We
agreed
on “23”

...

Simplification to two-
thread consensus

(it doesn’t get simpler
than that ☺)

spcl.inf.ethz.ch

@spcl_eth

4

Consistent Result

I propose
“23”.

I propose
“42”.

We
agreed
on“23”.

We
agreed
on “42”

This is illegal!

Consensus result needs to be
consistent: the same on all threads.

spcl.inf.ethz.ch

@spcl_eth

5

Valid Result

I propose
“23”.

I propose
“42”.

We
agreed

on“420”.
We

agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

spcl.inf.ethz.ch

@spcl_eth

6

Wait-Free

I propose
“23”.

I propose
“42”.

I cannot finish
because I am

waiting for
the other
thread.

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.

I will not
schedule you

now!

spcl.inf.ethz.ch

@spcl_eth

▪ Instead of proposing an integer, every thread now proposes either 0 or 1

▪ Equivalent to “normal” consensus for two threads

▪ How can we proof this?

▪ If we have int_decide(int) as primitive, we can implement bin_decide(bit)

▪ and vice-versa

7

Simplification: Binary Consensus

bin_decide(bit b) {
return int_decide(b)

}

int_decide(int d) {
propose[id] = d; // shared array
int winner = bin_decide(id);
return propose[winner];

}We can implement binary
consensus using integer
consensus.

We can implement integer
consensus using binary consensus
(id in {0,1} and unique).

(two threads only)

spcl.inf.ethz.ch

@spcl_eth

8

State Diagrams of Two-thread Consensus Protocols

Initial state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

Each state has at most two successors:
Either A or B execute an instruction.

A moves
B moves

1

Final state (decision value of any
final state reached has to be the

same on both threads!)

This tree must be finite
(because the protocol is wait-

free)

spcl.inf.ethz.ch

@spcl_eth

9

Anatomy of a State (in Two-Thread Consensus)

Shared Variables

Thread local
variables of A Thread local

variables of B

Program
counter of A

Program
counter of B

spcl.inf.ethz.ch

@spcl_eth

10

Anatomy of a State - Example

Shared Variables
r1=3

Thread local
variables of A

x=2

Thread local
variables of B

y=0

Program
counter of A

S3

Program
counter of B

S1
Shared Variables

r1=3

Thread local
variables of A

x=1

Thread local
variables of B

y=0

Program
counter of A

S5

Program
counter of B

S1

The states are different, since A has
different local variables and program
counter values.

Yet from B’s perspective they look the
same! (Until A writes x into a shared
variable!)

spcl.inf.ethz.ch

@spcl_eth

▪ In binary two-thread consensus, threads either decide zero (0) or one (1)

▪ At some point during the execution (i.e., a state), each thread will “decide” what to return

▪ We call a state where a thread has decided on one 1-valent and a state where a thread has decided on zero 0-valent

▪ Undecided states are called bivalent – decided states are called univalent

▪ Lemma 1: The initial state is bivalent

▪ Proof outline:

Consider initial state with A has input 0 and B has input 1

If A finished before B starts, we must decide 0 and if B finishes before A starts,
we must decide 1 (because is only knows the thread’s input!)

Thus, the initial state must be bivalent!

11

The Concept of Valency

A moves
B moves

1

0|1

spcl.inf.ethz.ch

@spcl_eth

12

Critical States in Binary Two-Thread Consensus

0|1

There is always at least one bivalent
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always
univalent.

From this state we only
reach states with output 1,

so it is also univalent.

This state is bivalent but all
his successors are univalent.
We call such states critical.

Definition: a (bivalent) state is
called critical, if both child states
are univalent!

spcl.inf.ethz.ch

@spcl_eth

13

Quiz: Label the States

1 1 0 1

Output states are always
univalent.

Output states are always
univalent.

Output states are always
univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.

It is also critical, since it is
bivalent and all its successors

are univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.
The start state is always

bivalent!

This state is bivalent, as we
can reach 0 and 1 output

states.

spcl.inf.ethz.ch

@spcl_eth

14

Critical State Existence Proof

Lemma 2: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the threads only
move to other bivalent states.

• If it runs forever the protocol is not wait free.

• If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch

@spcl_eth

15

Impossibility Proof Setup – Critical State

0|1

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next
we end up with 0, if B moves

next we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So what actions can a thread
perform in its “move”?

Either read or write a shared
register! – Let’s see why.

spcl.inf.ethz.ch

@spcl_eth

16

Impossibility Proof Setup – Possible actions of a thread

0|1 So what actions can a thread
perform in his “move”?

What happens if A just reads
from and writes to local vars?

critical

A: x=y+z
(x,y,z: local)

0

Output must
be 0

Output must
be 1

Now the
scheduler

pauses A, and
B runs solo

From B’s perspective
these two states look

exactly the same!
B cannot know that
one of them must

output 0!

Conclusion: First instruction
after critical state must be a
read or write of a shared
variable!

spcl.inf.ethz.ch

@spcl_eth

17

Impossibility Proof Setup – Possible actions of a thread

0|1

0 1

A moves
first

B moves
first

We know reading/writing
local variables cannot lead

out of a critical state – what
remains?

A can read a
shared variable

A can write a
shared variable

B can read the
same variable

B can read a
different variable

B can write the
same variable

B can write a
different variable

Many cases…
let’s make tables

spcl.inf.ethz.ch

@spcl_eth

18

Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary
consensus

possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the
register A reads r1 in both
cases.

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Managable… Let’s look at the cases where A reads

spcl.inf.ethz.ch

@spcl_eth

19

Impossibility Proof Case I: A reads

0|1

Output is decided (0)
due to critical state.

A reads B does X Output is decided (1)
due to critical state.

B does X

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

20

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

21

Impossibility Proof Case I’: B reads

0|1

Output is decided (0)
due to critical state.

B reads A does X Output is decided (1)
due to critical state.

A does X

From A’s perspective
these two states look

exactly the same!
However A needs to
(eventually) output

different values!

spcl.inf.ethz.ch

@spcl_eth

22

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

23

Impossibility Proof Case II: A and B write to different registers

0|1

Output is decided (0)
due to critical state.

A writes r1 B writes r2 Output is decided (1)
due to critical state.

B writes r2

Exactly the same state!

However it should be outputting 0
/ 1 depending on where it was

reached from!

A writes r1

Output 0

Output 1

spcl.inf.ethz.ch

@spcl_eth

24

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

25

Impossibility Proof Case III: A and B write to the same register

0|1

Output is decided (0)
due to critical state.

A writes r B writes r Output is decided (1)
due to critical state.

B writes r

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

26

That’s all

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

No

1985, 2.5k citations

spcl.inf.ethz.ch

@spcl_eth

▪ This lecture is called “parallel programming” – unfortunately, there is no “parallel algorithms” lecture in
our curriculum. Sequential algorithms are different and programming without algorithms questionable.

▪ You already heard about work and depth in the first part – I will show you some (simple) and practical
algorithms as examples today!

▪ Recall:

▪ Work W – number of operations performed when executing the algorithm (= sequential running time for P=1)

▪ Depth D – minimal number of operations for any parallel execution (= parallel running time for P=∞)

Depth is also the longest path in the computational DAG (cDAG)

▪ Example: summation of array a[N]:

27

Primer for Parallel Algorithms

for(int i=1; i<N; ++i) {
a[0] += a[i];

}

s +=
a[0]

s +=
a[1]

s +=
a[N-1]

…

W= N-1 D= N-1 Is this a good parallel algorithm?

This is a
cDAG

spcl.inf.ethz.ch

@spcl_eth

28

Parallel Summation (“Reduction”)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

a[0]+=a[1] a[2]+=a[3] a[4]+=a[5] a[6]+=a[7]

a[0]+=a[2] a[4]+=a[6]

a[0]+=a[4]

a[0]+=a[8]
W= N-1 D= ⌈log2N⌉

Same as best
sequential
algorithm!

“work optimal”
(“efficient”)

Can we do
better?

Warning: associativity required!

spcl.inf.ethz.ch

@spcl_eth

29

What if N ≫ P (usually the case!)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]

W= N-1 D=
𝑁

𝑃
− 1 + ⌈log2P⌉

Write the code for this (in the exercise) for arbitrary N and P!

spcl.inf.ethz.ch

@spcl_eth

30

Now to something real – Parallel Matrix Multiplication (e.g., Neural Networks)

double A[N][K], B[K][M], C[N][M];

for (int i =0; i < N; ++ i)
for (int j =0; j < M; ++ j) {

C[i][j] = 0;
for (int l =0; l < K; ++ l)

C[i][j] += A[i][l] * B[l][j];
}

double A[N][K], B[K][M], C[N][M];

parallel for (int i =0; i < N; ++ i)
parallel for (int j =0; j < M; ++ j) {

C[i][j] = 0;
for (int l =0; l < K; ++ l)

C[i][j] += A[i][l] * B[l][j];
}

simple parallel

W= NMK

D= NMK

W= NMK

D= K

Can we do better?
(What if P >> NM?)

double A[N][K], B[K][M], C[N][M];
double T[N][M][K]

parallel for (int i =0; i < N; ++ i)
parallel for (int j =0; j < M; ++ j) {

parallel for (int l =0; l < K; ++ l)
T[i][j][k] = A[i][k] * B[k][j];
C[i][j] = reduce(T[i][j][k])

}

What is the problem?

double A[N][K], B[K][M], C[N][M];
double T[N][M][P]

parallel for (int i =0; i < N; ++ i)
parallel for (int j =0; j < M; ++ j) {

parallel for (int r = [0.. P-1]) {
T[i][j][r] = 0;
for (int k = r*K/P; k < (r +1) * K / P; k++)

T[i][j][r] = T[i][j][r] + A[i][k]*B[k][j];
C[i][j] = reduce(T[i][j][r]) ;

} }

W= NMK

D= log2𝐾

