
1

Key JVM Components

Memory
Allocators

Garbage
Collectors

Portability
Layer

Bytecode
Interpreter

JIT
Compiler

Resolver/
Loader

Native
Interface

Bytecode
Verification

JVM

Operating System: Linux, Windows, OSEK/VDX, etc…

Architecture: x86, ARM, TI DSP, etc…

Program.class

2

class Test {
static int x;
double d;

Test();
Code:

0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return

public static native int print(double);

public double pp(int);
Code:

0: iload_1
1: i2d
2: dreturn

static {};
Code:

0: sipush 2018
3: putstatic #5 // Field x:I
6: return

}

Pushes content of local variable 0 (note: the variable is
of a reference type) to the stack.

Invoke constructor for the superclass of Test, that is,
java.lang.Object…and clear the stack.

Native method. Its implementation could be provided
for example in a C/C++ library.

Pushes content of local variable 1 (type integer) to stack.

convert the integer on the stack to a double.

Pop value from stack and return it.

push constant 2018 of type short (hence: si) to stack

pop 2018 from stack and write it to static field x.

JVM invokes this code before main()

Constructor for class Test

Different kinds of errors

3

1. Compiler errors
2. Runtime errors
3. Logic errors

Nested if/else

Chooses between outcomes using many tests
if (test) {

statement(s);
} else if (test) {

statement(s);
} else {

statement(s);
}

Example:
if (x > 0) {

System.out.println("Positive");
} else if (x < 0) {

System.out.println("Negative");
} else {

System.out.println("Zero");
}

4Tip: in parallelism/concurrency…try to have the if /else’s read from a local variable.

Arrays, Strings, Identity and Equality,
(Im)Mutability and Optimizations

5

int[] a1 = new int[] {1,2,3};
int[] a2 = new int[] {1,2,3};

System.out.println("a1 == a2? " + (a1 == a2));
System.out.println("a1.equals(a2)? " + a1.equals(a2));
System.out.println("Arrays.equals(a1, a2)? " + Arrays.equals(a1, a2));

String s1 = "ETH";
String s2 = "ETH";
// String s2 = s1.charAt(0) + "TH";

System.out.println("s1 == s2? " + (s1 == s2));
System.out.println("s1.equals(s2)? " + s1.equals(s2));

Language features vs. parallelism: Guidelines

• Keep variables as ‘local’ as possible: global variables means they
can be accessed by various parallel activities. While when its local
to the process/thread, we are safe against inadvertent accesses
to the variable.

• If possible, avoid aliasing of references: aliasing can lead to
unexpected updates to memory through a process that accesses
a seemingly unrelated variable (named differently).

• If possible, avoid mutable state, in particular when aliased:
aliasing is no problem if the shared object is immutable, but
concurrent mutations can make bugs really hard to reproduce
and investigate (“Heisenbugs”)

6

	Key JVM Components
	Slide Number 2
	Different kinds of errors
	Nested if/else
	Arrays, Strings, Identity and Equality,�(Im)Mutability and Optimizations
	Language features vs. parallelism: Guidelines

