Previously on PP:
Shared Resources

Synchronized incrementing and decrementing

public class Counter implements Runnable { public class Main {
public int ticks = -1; public static void main(String[] args) {

private Cell cell;

private int delta; Counter up = new Counter(cell, 1, MAX TICKS);
private int maxTicks; Counter down = new Counter(cell, -1, MAX TICKS);
Counter(Cell cell, int delta, int maxTicks) { Thread upWorker = new Thread(up);

this.cell = cell; Thread downWorker = new Thread(down);

this.delta = delta;

this.maxTicks = maxTicks; upWorker.start(); downWorker.start();
} upWorker.join(); downWorker.join();
@Override System.out.printf(“Cell value: %d\n", cell.get());
public void run() { }

ticks = 0; }

while (ticks < maxTicks) {

bli 1 Cell
cell.inc(delta); public class Cell {

private long value;

++ticks;
}
}} Cell value: -799 o
Cell value: 667088 Al o SR CRi) |
Cell value: -281765 }

Cell value: 147854)

Updating shared state in parallel

// relevant bytecode

Single statement in LongCell.inc ALOAD ©
DUP
this.value += delta; GETFIELD LongCell.value
_ _ LLOAD 1
Is executed in several small steps LADD

PUTFIELD LongCell.value

Many different interleavings possible, including
which state data is used

In

__;.EE_C_-&S:D@C &Q“’pé; &G/ Ju.é/éam—(w/}/)
wamj/ﬁvé@ﬂ%e + = G@/{Q s T, dlle = ¢4

[= -
ez 0 = 1

Hous / essodilly (o byleols fo0d)

=0 Dne Pe:si% bao/ t;@égmj;
£<6 £ =6
£+=4 (= Gtg
f £ =
G =¢ G =¢ b,
nu{‘[f +=1
priet(G) e ;
5£ 6=5!'
66 = G=£
pact(6)) -4 pat(6) [+4

synchronilzed

public class Cell {
private long value;

public synchr'onized void inc(long delta) {
this.value += delta;

¥
¥

synchronized enforces
body of method inc () mutual exclusion
is a critical section and thereby prevents
bad interleavings

Shared memory interaction between threads

In Java, all objects have an internal lock, called intrinsic lock or
monitor lock

Synchronized operations lock the object: while locked, no other
thread can successfully lock the object

Generally, if you access shared memory, with a least one writing
thread, make sure it is done under a lock

If not, your code is prone to a data race

	Previously on PP:�Shared Resources
	Synchronized incrementing and decrementing
	Updating shared state in parallel
	Slide Number 4
	synchronized
	Shared memory interaction between threads

