
Yesterday on PP:
Synchronized, Wait, Notify, 

NotifyAll, Deadlocks, Lockouts, 
Nondeterminism, …

1



2

Producer and consumer run indefinitely

Producer puts items into a shared buffer, consumer takes them out

For simplicity, buffer is unbounded (has no capacity limit); producing 
is always possible

But consumption only possible if buffer isn’t empty

Producer-Consumer

shared bufferproducer consumer
producer

adds items

consumer

takes items
...



3

Producer-Consumer: v3
public class Consumer extends Thread {

...

public void run() {
long prime;
while (true) {

synchronize (buffer) {
while (buffer.isEmpty())

buffer.wait();
prime = buffer.remove();

}
performLongRunningComputation(prime);

}
}

}

public class Producer extends Thread {
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {

buffer.add(prime);
buffer.notifyAll();

}
}

}
}

buffer.wait():
1. Consumer thread goes to sleep

(status NOT RUNNABLE) …
2. … and gives up buffer’s lock

buffer.notifyAll():
1. All threads waiting for 

buffer’s lock are woken up 
(status RUNNABLE)



4

Pseudo-Code Implementations (Inside JVM)
synchronized(obj) { s } ≡

obj.acquireLock();
s;
obj.releaseLock();

obj.acquireLock() ≡
label L:
if (obj.owner == null) {
obj.owner == currentThread;

} else {
currentThread.sleepUntilLockReleasedFor(obj);
// Next line executed only once thread woken up

goto L;
}

obj.releaseLock() ≡
assert obj.owner == currentThread;
obj.owner = null
informThreadsWaitingOn(obj);

Pseudo-code implementations providing 
intuition for how these operations could be 
implemented inside the JVM.

We assume that bad interleavings can’t happen 
inside the pseudo-code, e.g
if (obj.owner == null)

and subsequent statement
obj.owner == currentThread;

aren’t interrupted by another thread (the JVM 
indeed takes care of this).

Details such as the bookkeeping of which 
thread wants to acquire which lock are omitted 
here (and not necessary for building intuition). 
However, they will be provided in the 2nd half 
of the course.



5

Pseudo-Code Implementations Inside JVM 

obj.wait() ≡
obj.releaseLock();
label L: 
currentThread.sleepUntilNotifiedOn(obj);
// Next line executed only once thread woken up

obj.acquireLock();

obj.notify() ≡
informSomeThreadWaitingOn(obj)

obj.notifyAll() ≡
informAllThreadsWaitingOn(obj)

Pseudo-code implementations providing 
intuition for how these operations could be 
implemented inside the JVM.

We assume that bad interleavings can’t happen 
inside the pseudo-code.

Details such as the bookkeeping of which 
thread wants to acquire which lock are omitted 
here (and not necessary for building intuition). 
However, they will be provided in the 2nd half 
of the course.



C1 C2 P

time

Buffer

enter sync(buf)


owner:

...

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



C1 C2 P

time

Buffer

enter sync(buf) 

owner: C1

...

enter sync(buf)
z
z
...

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



C1 C2 P

time

Buffer

enter sync(buf) 

owner: C1

...

enter sync(buf)
z
z
...

Use the pseudo-code on the previous 
slides to explore this and other scenarios.

enter sync(buf)
z
z





C1 C2 P

time

Buffer

enter sync(buf)

if (buf.isEmp()) // while
buf.wait()

z

z



owner: C1

...

true

Use the pseudo-code on the previous 
slides to explore this and other scenarios.


enter sync(buf)

z
z
...

enter sync(buf)
z
z





C1 C2 P

time

Buffer

enter sync(buf)

if (buf.isEmp()) // while
buf.wait()

z

z



owner: C1, P

...

true

enter sync(buf)
z
z
...

enter sync(buf)
z
z

enter sync(buf)



buf.wait() release buf’s lock, other threads 
are woken up, P gets buf’s lock
(C2 could also get it – what would happen 
then? spoiler: nothing bad)

1 1

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



C1 C2 P

time

Buffer

enter sync(buf)

if (buf.isEmp()) // while
buf.wait()

z

z

z

z



owner: C1, P

...

true

enter sync(buf)
z
z
...

enter sync(buf)
z
z

enter sync(buf)



buf.wait() release buf’s lock, other threads 
are woken up, P gets buf’s lock
(C2 could also get it – what would happen 
then? spoiler: nothing bad)

1 1

buf.add(...)
buf.notify()
exit sync(buf)

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



C1 C2 P

time

Buffer

enter sync(buf)

if (buf.isEmp()) // while
buf.wait()

z

z

z

z



owner: C1, P

...

true

enter sync(buf)
z
z
...

enter sync(buf)
z
z

enter sync(buf)



buf.wait() release buf’s lock, other threads 
are woken up, P gets buf’s lock
(C2 could also get it – what would happen 
then? spoiler: nothing bad)

1 1

buf.add(...)
buf.notify()
exit sync(buf)

2
buf.notify() informs C1 that the buffer has 
been modified
(what if C1 immediately tries to acquire 
buf’s lock? I.e. before P releases it? Or what 
if C2 again attempts to get buf’s lock? 
spoiler: nothing bad)

2

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



C1 C2 P

time

Buffer

enter sync(buf)

if (buf.isEmp()) // while
buf.wait()

z

z

z

z



owner: C1, P, C1

...

true

enter sync(buf)
z
z
...

enter sync(buf)
z
z

enter sync(buf)



buf.wait() release buf’s lock, other threads 
are woken up, P gets buf’s lock
(C2 could also get it – what would happen 
then? spoiler: nothing bad)

1 1

buf.add(...)
buf.notify()
exit sync(buf)

2
buf.notify() informs C1 that the buffer has 
been modified
(what if C1 immediately tries to acquire 
buf’s lock? I.e. before P releases it? Or what 
if C2 again attempts to get buf’s lock? 
spoiler: nothing bad)

2

buf.acqLk();

if (buf.isEmp()) // while
buf.remove(...)

exit sync(buf)



false

Use the pseudo-code on the previous 
slides to explore this and other scenarios.



Don’t worry, all of this will be 
elaborated on in the 2nd half

14


	Yesterday on PP:��Synchronized, Wait, Notify, NotifyAll, Deadlocks, Lockouts, Nondeterminism, …
	Producer-Consumer
	Producer-Consumer: v3
	Pseudo-Code Implementations (Inside JVM)
	Pseudo-Code Implementations Inside JVM 
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Don’t worry, all of this will be elaborated on in the 2nd half

