
Parallel Programming
Previous weeks: Parallelism on the Java Level
Next: Parallelism on the Hardware Level

CPUs and Memory Hierarchies
• Goal: allows cores to work in parallel, on their own, fast

memory
• CPU reads/writes values from/to main memory, to compute

with them, with a hierarchy of memory caches in between.
Faster memory is more expensive, hence smaller: L1 is 5x faster
than L2, which is 30x faster than main memory, which is 350x
faster than disk

• Synchronisation between caches is taken care of by cache
coherence protocols (e.g. MESI; typically implemented on the
hardware level)

• Concurrency hazard: cores may pre-/postpone reads/writes
from/to cache; memory barriers (special machine code
instructions) needed to prevent problems with parallel code

• Java: automatically inserted if, e.g. synchronized is used
• C++: similar, but manual insertion also possible 2

Main Memory (32GB)

L3 cache

CPU

L1

Core Core

L2

L1

L2

3 approaches to apply parallelism to
improve sequential processor performance
• Vectorization: Exposed to developers [last week]

• Instruction Level Parallelism (ILP): Inside CPU [last week]

• Pipelining: Also internal, but transfers to software [today]

Vectorization
• Goal: improve performance by using specialized

vector instructions
• SIMD: Single Instruction, applied to Multiple Data
• Requires vectorised code: code that uses the vector

instructions provided by the target platform (CPU)
• Compilers (C++, JVM’s JIT, …) attempt to detect vectorization opportunities  fully

automated, but little or no control over if/where/how
• Platform-specific libraries (intrinsics, C/C++) expose vector instructions to developers 

manual effort, but full control
• Poses no (additional) safety risks to concurrency

Instruction Level Parallelism (ILP)

5

• Goal: improve CPU performance by internal parallelisation
• CPU/Core detects independent operations in its instruction stream

(left: lines 1, 2)
• These may be executed in parallel inside the CPU, if enough

functional units (e.g. floating-point unit, …) are available

1: x = a+b
2: y = c+d
3: if (p)
4: z = e*f
5: else
6: z = x*y

• Various measures to increase potential for instruction parallelization. E.g. speculatively
execute instructions in parallel (left: line 4, together with 1, 2), even if the result may not
be used (left: if p, which may depend on lines 1,2, turns out to be false)

• Concurrency hazard: cores only locally consider dependencies in their instruction
stream, not globally across all cores

• Java: e.g. synchronized automatically adds memory barriers to prevent problematic reordering
• C++: similar, but manual insertion also possible

• Compilers may also reorder instructions; similar problems, same solution (e.g. use
synchronized)

Thread Safety Across Compilers and Platforms

6Icons (contract, people, cpu) by Icons8 (https://icons8.com)

Programming
Language’s

Memory Model

Intel
i486

Intel
Kaby Lake

AMD
Zen

ARMv8-A

...

Compiler(s)

• CPU designers specify CPU behaviour and guarantees
(e.g. when do reorder, and how)

• A programming language’s memory model specifies
concurrency behaviour and guarantees (e.g. of a
synchronized block)

• Developers program against the memory model
• Regular developers “only” know guidelines, e.g. that shared data

should only be accessed inside a synchronized block
• Expert developers know the memory model and use special

instructions (e.g. volatile), in particular in C++, to squeeze out
performance

• Compilers know CPU specifications and enforce PL’s
memory model guarantees on each platform

• Bottom line:
• Memory model protects developers from lower levels (compilers,

hardware)
• Concurrency guidelines sufficient for majority of

applications/projects

https://icons8.com/icons/set/contract

	Parallel Programming
	CPUs and Memory Hierarchies
	3 approaches to apply parallelism to improve sequential processor performance
	Vectorization
	Instruction Level Parallelism (ILP)
	Thread Safety Across Compilers and Platforms

