Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publications of SPCL

T. Hoefler:

 Scientific Benchmarking of Parallel Computing Systems

(Presentation - presented in Knoxville, TN, USA, Aug. 2016, )


Abstract

Measuring and reporting performance of parallel computers constitutes the basis for scientific advancement of high-performance computing (HPC). Most scientific reports show performance improvements of new techniques and are thus obliged to ensure reproducibility or at least interpretability. Our investigation of a stratified sample of 120 papers across three top conferences in the field shows that the state of the practice is not sufficient. For example, it is often unclear if reported improvements are in the noise or observed by chance. In addition to distilling best practices from existing work, we propose statistically sound analysis and reporting techniques and simple guidelines for experimental design in parallel computing. We aim to improve the standards of reporting research results and initiate a discussion in the HPC field. A wide adoption of this minimal set of rules will lead to better reproducibility and interpretability of performance results and improve the scientific culture around HPC.

Documents

download slides:


Recorded talk (best effort)

 

BibTeX

@misc{hoefler-scientific-benchmarking,
  author={Torsten Hoefler},
  title={{Scientific Benchmarking of Parallel Computing Systems}},
  year={2016},
  month={08},
  location={Knoxville, TN, USA},
  note={},
}