Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publications of SPCL

S. Di Girolamo, F. Vella, T. Hoefler:

 Transparent Caching for RMA Systems

(In Proceedings of the 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS'17), presented in Orlando, FL, USA, pages , IEEE, ISBN: , May 2017, )

Publisher Reference


The constantly increasing gap between communication and computation performance emphasizes the importance of communication-avoidance techniques. Caching is a well-known concept used to reduce accesses to slow local memories. In this work, we extend the caching idea to MPI-3 Remote Memory Access (RMA) operations. Here, caching can avoid inter-node communications and achieve similar benefits for irregular applications as communication-avoiding algorithms for structured applications. We propose CLaMPI, a caching library layered on top of MPI-3 RMA, to auto- matically optimize code with minimum user intervention. We demonstrate how cached RMA improves the performance of a Barnes Hut simulation and a Local Clustering Coefficient computation up to a factor of 1.8x and 5x, respectively. Due to the low overheads in the cache miss case and the potential benefits, we expect that our ideas around transparent RMA caching will soon be an integral part of many MPI libraries.


download article:
download slides:

Recorded talk (best effort)



  author={Salvatore Di Girolamo and F. Vella and Torsten Hoefler},
  title={{Transparent Caching for RMA Systems }},
  booktitle={Proceedings of the 31st IEEE International Parallel \& Distributed Processing Symposium (IPDPS'17)},
  location={Orlando, FL, USA},