Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publications of SPCL

L. Huang, L. Gianinazzi, Y. Yu, P. D. Dueben, T. Hoefler:

 DiffDA: a Diffusion model for weather-scale Data Assimilation

(In Proceedings of the 41st International Conference on Machine Learning, Jul. 2024)

Abstract

The generation of initial conditions via accurate data assimilation is crucial for weather forecasting and climate modeling. We propose DiffDA as a denoising diffusion model capable of assimilating atmospheric variables using predicted states and sparse observations. Acknowledging the similarity between a weather forecast model and a denoising diffusion model dedicated to weather applications, we adapt the pretrained GraphCast neural network as the backbone of the diffusion model. Through experiments based on simulated observations from the ERA5 reanalysis dataset, our method can produce assimilated global atmospheric data consistent with observations at 0.25deg (~30km) resolution globally. This marks the highest resolution achieved by ML data assimilation models. The experiments also show that the initial conditions assimilated from sparse observations (less than 0.77% of gridded data) and 48-hour forecast can be used for forecast models with a loss of lead time of at most 24 hours compared to initial conditions from state-of-the-art data assimilation in ERA5. This enables the application of the method to real-world applications, such as creating reanalysis datasets with autoregressive data assimilation.

Documents

download article:
access preprint on arxiv:
download slides:
 

BibTeX

@inproceedings{,
  author={Langwen Huang and Lukas Gianinazzi and Yuejiang Yu and Peter D. Dueben and Torsten Hoefler},
  title={{DiffDA: a Diffusion model for weather-scale Data Assimilation}},
  year={2024},
  month={07},
  booktitle={Proceedings of the 41st International Conference on Machine Learning},
  doi={10.48550/arXiv.2401.05932},
}