Copyright Notice:

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publications of SPCL

A. Calotoiu, T. Hoefler, M. Poke, F. Wolf:

 Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes

(In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC13), presented in Denver, Colorado, USA, pages 45:1--45:12, ACM, ISBN: 978-1-4503-2378-9, Nov. 2013)

Publisher Reference

Abstract

Many parallel applications suffer from latent performance limitations that may prevent them from scaling to larger machine sizes. Often, such scalability bugs manifest themselves only when an attempt to scale the code is actually being made—a point where remediation can be difficult. However, creating analytical performance models that would allow such issues to be pinpointed earlier is so laborious that application developers attempt it at most for a few selected kernels, running the risk of missing harmful bottlenecks. In this paper, we show how both coverage and speed of this scalability analysis can be substantially improved. Generating an empirical performance model automatically for each part of a parallel program, we can easily identify those parts that will reduce performance at larger core counts. Using a climate simulation as an example, we demonstrate that scalability bugs are not confined to those routines usually chosen as kernels.

Documents

download article:
 

BibTeX

@inproceedings{automated-modeling,
  author={A. Calotoiu and T. Hoefler and M. Poke and F. Wolf},
  title={{Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes}},
  year={2013},
  month={11},
  pages={45:1--45:12},
  booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC13)},
  location={Denver, Colorado, USA},
  publisher={ACM},
  isbn={978-1-4503-2378-9},
}